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ABSTRACT  

Diabetes mellitus is known as blood-sugar disease. The pancreas fails to perform its 

appropriate function to stimulate insulin production in diabetic patients. The prevalence 

of type 2 diabetes mellitus (T2DM) has increased dramatically during recent decades and 

now it is a serious global health burden. According to the International Diabetes 

Federation 2015 report, the ratio of diabetic patients in the world is one out of eleven 

adults. Diabetes mellitus and its related complications are major causes of death in 

various countries.  

Most diabetes medicines nowadays available and have approval from FDA (United States 

Food & Drug Administration), but unfortunately, they could not approach satisfactory 

levels of blood sugar (glucose) in patients suffering diabetes mellitus and possess 

numerous adverse effects. Thus novel classes of anti-diabetic drugs are required. The 

efforts established by computer-aided drug design (CADD) are desirable because the 

CADD techniques can screen numerous available databases to produce novel and 

effective virtual candidates and decrease the time and costs to develop new drugs. The 

computer-aided drug design, especially virtual screening, is a widely-used technique for 

lead identification and lead optimization. The contribution of CADD techniques in the 

identification of antidiabetic agents has been discussed in this dissertation.  

 

Most of the diabetes patients cannot afford diabetic medicine in low-income countries 

and prefer to eat a healthy diet or some alternative low-priced plant-based products. The 

use of alternative medicine is increased in the world for lowering blood glucose in 

diabetic patients. While some highly developed countries people prefer plant-based 

treatments because they are safe and effective with few side effects.  

 

Protein tyrosine phosphatase non-receptor type 1 (PTPN1) inhibitory drugs for T2DM are 

a hot research target because to inhibit PTPN1 could efficiently ameliorate insulin 

resistance with normal plasma glucose level in patients of T2DM.  

 

I identified novel antidiabetic agents along with knowledge of plant extracts which 

possess antidiabetic activity by computer-aided drug design methods. I concluded that the 

antidiabetic agents show the appropriate mode of interactions with Canavalia ensiformis 

protein; hence it proved their mechanism of action as controller of diabetes by 

stimulating insulin secretion. The identified lead and designed analogs based on it can be 

recommended for laboratory tests to confirm their antidiabetic activity. While the plant 

extract isosilybin has the possibility to become a PTPN1 inhibitor with antidiabetic 

activity. The isosilybin can be recommended for laboratory tests and further analyses to 

confirm its activity. 

 

In chapter 1, I introduced the background and current status of CADD for diabetes 

mellitus, my research goals and the strategies used in this dissertation. 
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In chapter 2, by computational analysis of Canavalia ensiformis protein, I demonstrated 

that it conserved amino acid sequence homologous to human insulin protein, and it is also 

evident from the literature review that leguminous plants contain the insulin-like 

sequence homologous to animal insulin. The plant insulin (UniProt ID: Q7M217) used as 

alternative source of human insulin showed its mechanism of action in terms of optimal 

binding mode with available antidiabetic drugs. A biphenyl derivative was screened as a 

lead compound (WO2007067614) and designed its analogs. Molecular docking analyses 

showed that four analogs are recommended as antidiabetic agents with suitable drug-like 

properties as compared with a standard antidiabetic drug (aleglitazar). 

 

In chapter 3, plant-derived PTPN1 inhibitors possessing antidiabetic activity were used 

for pharmacophore model generation. The pharmacophore-based screening of plant-

derived compounds of the ZINC database was conducted using ZINCpharmer; screened 

hits were assessed to evaluate their drug-likeness, pharmacokinetics, detailed binding 

behavior and aggregator possibility. The crystal structure of PTPN1 (PDB ID: 3EAX) 

was used as a molecular target for docking analyses of screened dataset. Through the 

virtual screening and in silico pharmacology protocols ZINC30731533 (isosilybin) was 

identified as a lead compound with optimal properties.  

 

In chapter 4, I sum-ups the achievement and originality of this research work and 

reviewed the integration of computational methods used to produce fruitful results in the 

discovery of antidiabetic drugs and clarified my research outcomes warrant new 

protocols in the design/discovery of potential drug-like virtual hits based on the available 

biological data. It concluded with the significant aspects of the current research scheme in 

the area of drug discovery of plant-derived proteins and compounds for future functional 

food and medicinal research. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Diabetes mellitus 

Diabetes mellitus (DM) is a group of diseases that result from high levels of blood 

glucose and that depend on insulin production and action. It involves multiple disorders 

of abnormal carbohydrates, lipids and protein metabolism [1]. People with diabetes may 

develop serious complications such as heart disease, stroke, kidney failure, blindness and 

premature death. DM is a diverse and complicated disorder that is characterized by 

persistent hyperglycemia. It has been called a “third killer” of human health [2]. 

Hypoglycemic medication is used to lower the blood sugar level in the body or to treat 

other severe symptoms of DM. These medications can be categorized into insulin and 

insulin preparations, which are used only parenterally and hypoglycemic medicine that 

can be administered orally [3].The 2014 National Diabetes Statistics Report revealed that 

from 2010 to 2012, the number of American diabetic patients increased from 25.8 million 

to 29.1 million, and that the DM prevalence rate for adults aged 20 years and older 

increased from 11.3% to 12.3% [4]. The International Diabetes Federation recently 

reported that the number of people with diabetes is expected to rise from 382 million to 

592 million by 2035. Most people with diabetes live in low and middle-income countries 

[5, 6]. 

1.1.1. Types and treatments for diabetes mellitus 
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There are two most important categories of diabetes mellitus (DM); type 1 known 

as T1DM and type 2 known as T2DM but there is another third type is diabetes known as 

gestational diabetes belongs to pregnant women’s.  

T1DM is an autoimmune disorder in which the immune system is activated to 

terminate the pancreatic cells function to produce insulin [7, 8]. T1DM is usually ten to 

fifteen percent of all type of diabetic cases [8]. Its indications are frequent and also life-

threatening. Its diagnosis is quite rapid and managed with insulin injections only depends 

upon the condition of patients. T1DM does not depend on the lifestyle, but if someone 

has T1DM, regular diet and exercise can reduce the chance of development of other 

complications e.g. damage to kidney, limbs, and eyes [7].  

T2DM is a progressive disorder in which body develops resistance to regular 

insulin functions and losses its capacity to regulate sufficient insulin in the pancreas [7-9]. 

T2DM is related with risk factors; unstable lifestyle, genetic and family history. Usually, 

eighty-five to ninety percent of all diabetic cases belong to T2DM. There are no specific 

indications; normally situation can go undetected and being realized in old age. There is 

currently no treatment for T2DM; which can manage the condition properly but healthy 

food, lifestyle adaptations, and proper medicine can improve the situation to decrease the 

risk of development into progressive complications especially cardiovascular disorders [8, 

9].  

Gestational diabetes is in between five percent to ten percent cases found in the 

pregnant women. Usually, in the initial situation, it can manage with the regime of 

healthy food and physical exercises. But sometimes it is managed with insulin injections 
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in the period of pregnancy and ended this situation after delivery of baby but the risk is 

still there for baby and mother both to develop T2DM in rest of their life [7].   

Complications of DM are a frequent heart attack, stroke, and the collapse of blood 

vessels, kidney diseases, nervous disorders, eye infections, and pregnancy complications 

[9, 10]. 

 Although there are antidiabetic medications currently approved by the U.S. FDA 

to treat patients with type 2 diabetes, most do not achieve appropriate glycemic control, 

and some have severe side effects. Successful treatment of type 2 diabetes, therefore, 

requires new drugs with improved mechanisms of action. In our review, I describe the 

use of computational tools for the discovery and design of new anti-diabetic drugs that 

are not currently approved, but that may lower glucose levels and decrease the risk of 

hypoglycemia, which is a major difficulty to control level of glucose and important for 

treatments which increase levels of insulin [6]. 

Table 1.1:  Approved drugs for type 2 diabetes. 
 

Therapeutic Class 

of Compound 

Mechanism of 

Action 
Approved Drugs 

Date of First 

Compound 

Approved 

Adverse Effects 

and/or Comments 

Biguanide 

 

Increases insulin 

sensitivity, 

suppresses 

glucose 

production in the 

liver 

Phenformin, 

Metformin 

1957 (EMA), 

1995 (FDA) 

Nausea, vomiting, 

diarrhea and 

flatulence; If taken 

with meals, avoid 

use in patients with 

renal or hepatic 

impairment or with 

CHF, because of 

increased risk for 

lactic acidosis. 

Second generation 

sulfonylureas 

 

Stimulate insulin 

secretion from 

the pancreas 

Glimepiride, 

Glipizide, 

Gliclazide, 

Glibenclamide(Glyburide), 

Gliquidone 

Glibenclamide 

(Glyburide):1969 

(EMA),1984 (FDA) 

Hypoglycemia and 

weight gain 

Insulin: regular 

human insulin, 

NPH insulin, 

Helpful in 

lowering blood 

glucose 

Regular insulin, 

Bovine insulin 

Regular insulin:1982 

(FDA),1984 (EMA), 

Bovine insulin:1922 

Severe hypoglycemia 

and weight gain. A 

new administration 
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insulin aspart, 

insulin lispro, 

insulin glargine, 

insulin detemir, 

insulin levemir 

form of inhaled 

insulin has been 

recently approved 

(2014) (Afrezza) for 

type 1 and type 2 

diabetes. 

Alpha-glucosidase 

inhibitor 

Delay complex 

carbohydrate 

absorption 

Acarbose, 

Miglitol, 

Voglibose 

Acarbose:1991 

(EMA),1995 (FDA) 

Flatulence, diarrhea, 

abdominal pain. Less 

effective than other 

agents, it is 

considered in all 

elderly patients with 

mild diabetes. 

Glinides 

Stimulate insulin 

secretion from 

the pancreas 

Repaglinide, 

Nateglinide 

Repaglinide:1998 

(EMA), 1997 (FDA) 

Hypoglycemia and 

weight gain; the 

precaution is to take 

with meals to control 

rapid onset. Some 

partial agonists are in 

clinical trials. An 

example is INT131 

(previously known as 

AMG-131), which 

progressed through 

the phase 2 clinical 

trials. 

C333H is a novel 

partial agonist in 

preclinical 

development. 

Thiazolidinediones 

Increase 

peripheral tissue 

insulin 

sensitivity 

Pioglitazone, 

Rosiglitazone 

Rosiglitazone:1999 

(FDA), 2000 (EMA) 

Edema, it should be 

avoided in patients 

with heart failure. 

These agents can 

cause or exacerbate 

CHF contra indicated 

in patients with 

NYHA class III or 

IV heart failure. 

Amylin analogue 

Slowing of 

gastric 

emptying, 

suppression of 

elevated 

glucagon, 

stimulation of 

satiety. 

Pramlintide 
Pramlintide:2005 

(FDA) 

Approved for type 1 

and 2 diabetes, 

nausea, 

hypoglycemia when 

combined with other 

anti-diabetic drugs 

(e.g. insulin). 

GLP-1 agonists 

Stimulation of 

glucose 

dependent 

insulin release, 

suppression of 

elevated 

glucagon levels, 

Exenatide, 

Liraglutide, 

Exenatide extended-release, 

Lixisenatide, 

Albiglutide, 

Dulaglutide 

Exenatide: 2005 

(FDA), 2006 (EMA), 

Liraglutide:2010 

(FDA), 2009 (EMA), 

Exenatide ER: 2012 

(FDA), Lixisenatide: 

2013 (EMA), 

Only injectable drug, 

weight loss, nausea, 

vomiting, diarrhea 

and acute 

pancreatitis. Risk for 

medullary thyroid 

cancer, pancreatitis 
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reduction of 

gastrointestinal 

motility 

Albiglutide: 2014 

(FDA, EMA), 

Dulaglutide: 2014 

(FDA) 

or pancreatic cancer. 

Not confirmed in 

clinical trials by 

FDA and EMA. 

Many oral GLP-1 

agents are under trail 

for TD. 

ORMD-0901 

NN9924, 

NN9926, 

NN9927, 

NN9928, 

TTP054, 

ZYOG1, 

NN9924, 

ORMD-0901, 

TTP054 have 

reached Phase 2 

DPP4 inhibitor 

Slow 

inactivation of 

incretin 

hormones 

Sitagliptin, 

Vildagliptin, 

Saxagliptin, 

Linagliptin, 

Alogliptin 

Sitagliptin:2006 

(FDA), 2007 (EMA), 

Vildagliptin:2008 

(EMA), Saxagliptin: 

2009 (FDA, EMA), 

Linagliptin:2011 

(FDA), Alogliptin: 

2013 (FDA) 

Risk for medullary 

thyroid cancer, 

pancreatitis or 

pancreatic cancer. 

Not confirmed in 

clinical trials by 

FDA and EMA. Few 

agents are under 

clinical: ARI-2243 

(Phase 1), 

Teneligliptin (Phase 

1), Omarigliptin 

(Phase 3), 

Trelagliptin (Phase 

3) 

Bile acid 

sequestrant 

Possibly 

activation of the 

farnesoid X 

receptor / bile 

acid receptor 

 

Colesevelam 
Colesevelam:2008 

(FDA) 

Constipation, nausea 

and dyspepsia. 

Primary a lipid 

lowering drug with 

additional glucose 

lowering effects. 

Mechanism of action 

for diabetes control 

is unknown. 

Dopamine agonist 

Central 

modification of 

insulin 

resistance 

Bromocriptine 
Bromocriptine:2009 

(FDA) 

Orthostatic 

hypotension, nausea. 

Mechanism of action 

for diabetes control 

is unknown. 

SGLT2 inhibitor 

Reduction of the 

renal threshold 

for glucose 

excretion 

Dapagliflozin, 

Canagliflozin, 

Empagliflozin 

Dapagliflozin:2012 

(EMA), 2014 (FDA), 

Canagliflozin:2013 

(FDA), 

Empagliflozin:2014 

(FDA, EMA) 

Genital infections 

and possible diuretic 

effects. Other 

favorable effects of 

SGLT2 inhibitors 

include a reduction 

in both body weight 
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and blood pressure. 

Still some agents are 

under trails to 

improve the effects, 

e.g. Ertugliflozin 

(Phase 3), 

EGT0001442 (Phase 

2), luseogliflozin 

(TS-071) (Phase 1). 
 

 

The most important function of anti-DM drugs is to stimulate the insulin via 

pancreatic cells and improve sensitivity of cells toward insulin hormone and it’s normally 

utilized along insulin. Various therapeutic classes of DM medications are present in the 

market and the reason to choose a medicine based on the type of DM (age factor, 

situations of the diabetic person and other critical issues). Twelve classes of anti-DM 

drugs are currently available and approved (table 1.1).   

There are ten more classes that have new mechanisms of action, which are in 

various phases of clinical trials shown in table 1.2. These therapeutic classes provide 

novel compounds that show improved safety and tolerability profiles for known adverse 

effects related to marketed agents such as gastrointestinal side effects, hypoglycemia risk 

and weight gain. Further optimization and clinical studies will help to generate a useful 

drug in a short period of time from these compounds. These agents may potentially 

control glucose levels and improve outcomes in patients with T2DM. I expect computer-

aided drug design techniques to contribute in improvement of the compounds and 

acceleration of novel diabetes drug development [6].   

 

Table 1.2:  Drugs under development for type 2 diabetes 

 
Therapeutic Class of 

Compound 
Mechanism of Action Adverse Effects and/or Comments 

11 beta-hydroxysteroid Improves lipid profiles, Risk of glucose intolerance, insulin resistance, dyslipidemia, 
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dehydrogenase type 1 

inhibitor 

fasting glucose levels and 

hepatic insulin sensitivity 

and hypertension. Some agents are under trails. There are no 

long-term studies available beyond 3 months: PF-00915275 

(Phase 1), INCB13739 (Phase 2), MK-0916 (Phase 2). 

Glycogen 

phosphorylase inhibitor 

Potential target of hepatic 

glucose production 

In early development: oral agents have shown promising 

results in animals and humans. 

Glucokinase activator 

Activate key enzyme to 

increase hepatic glucose 

metabolism 

Hyperlipidemia, hyperglycemia and Cardiovascular risk. 

Several drugs are currently in phase 2 clinical trials: PF-

04937319 (Phase 2), AZD1656 (Phase 2). 

G protein–coupled 

receptor 119 agonist 

Activation induces insulin 

release and increases 

secretion of glucagon-like 

peptide 1 and gastric 

inhibitory peptide 

Low potential for hypoglycemia. Several agents are in clinical 

trials: DS-8500 (Phase 2), MBX2982 (Phase 2), GSK1292263 

(Phase 2). 

PTP1B/PTPN1 

inhibitor 

Negatively regulates 

insulin in a signal pathway 

that helps to increase leptin 

and insulin release. 

Reduces adipose tissue storage of triglyceride under conditions 

of over-nutrition and was not associated with any obvious 

toxicity. No weight gain, indicating another substantial 

advantage for diabetic patients, who are frequently obese and 

at high cardiovascular risk. Some agents are currently in 

clinical trials: TTP814 (Phase 1/2), ISIS-PTP1BRx (Phase 2). 

Glucagon-receptor 

antagonist 

Block glucagon from 

binding to hepatic 

receptors, thereby 

decreasing 

gluconeogenesis. 

Low potential for hypoglycemia. Several agents are under 

trails: BAY 27-9955 (Phase 1), LGD-6972 (Phase 1), MK-

0893 (Phase 2), MK-3577 (Phase 2), LY-2409021 (Phase 2). 

Hepatic carnitine 

palmitoyltransferase 

1 (CPT1) inhibitors 

CPT1 is a mitochondrial 

enzyme involved in fatty 

acid metabolism makes 

CPT1 important in many 

metabolic disorders such as 

diabetes. Inhibition 

decreases gluconeogenesis 

Since its crystal structure is not known, its exact mechanism of 

action remains to be determined. Only limited data available. 

One agent is in clinical trials: Teglicar (Phase 2). 

Diacylglycerol 

acyltransferase 

(DGAT)-1 inhibitors 

Inhibition of DGAT-1 

enzyme responsible for 

final step in triglyceride 

synthesis – weight loss, 

improved insulin 

sensitivity, decreased 

cholesterol and 

triglycerides 

Gastrointestinal side effects (nausea, diarrhea, vomiting). 

Several agents are in clinical trials: DS-7250 (Phase 2), P7435 

(Phase 1) 

Sirtuin1 (SIRT1) 

activators 

Enhance glucose production 

and lipid metabolism, 

insulin signaling and 

pancreatic insulin secretion. 

SIRT1activation improves glucose homeostasis and insulin 

resistance. Very early development. One agent is in clinical 

trials: SRT3025 (Phase 1) 

Glucocorticoid receptor 

antagonist 

Liver specific 

glucocorticoid receptor 

antagonist; reduction of 

hepatic glucose production. 

Early in development, Only limited data is available. One 

agent is in clinical trials: ISIS-GCGRRx (Phase 1). 

 
 

1.1.2. Protein tyrosine phosphatase non-receptor type 1 (PTPN1) 

Some of important drugs are currently under development for T2DM. PTPN1 could be 

one upcoming possible oral therapeutic option for glycemic control and weight 
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management. PTPN1 knockout mice shown anti-DM activity by subsequently 

normalizing blood glucose levels and improves insulin sensitivity [11]. PTPN1 inhibition 

is a novel approach for the treatment of DM and PTPN1 inhibitors represent attractive 

medicinal activity in experimental studies for DM, obesity and cancer treatment [12, 13]. 

Recent studies demonstrate that biochemical and pharmacological confirmation for 

PTPN1 as important negative regulator of insulin along with leptin hormone. PTPN1 

mechanism of action for T2DM is shown in figure 1.1 [13].  

Figure 1.1: Protein tyrosine phosphatase non-receptor type 1 (PTPN1) in insulin 

and leptin signaling pathway [13].  



 

 

9 
 

Insulin binds to its receptor (IR) and induces conformational changes to activate 

insulin receptor kinase domain (IRK) in cytoplasmic part of IR. Activated receptor 

undergoes autophosphorylation of tyrosine residues and phosphorylate insulin receptor 

substrate (IRS) activates phosphatidylinositol-3-Kinase (PI3K) via interacting with p85 

subunit and activates the catalytic subunit p110. Activation of P13K encourages 

downstream effectors which monitor the translocation of glucose transporter 4 (GLUT4) 

and cellular glucose endorsement in muscle and deactivates glycogen-synthase kinase 3  

(GSK3). Leptin hormone is cooperative in metabolic homeostasis along with PTPN1. 

Leptin binds to its receptor (obR) and proceeds phosphorylation of Janus kinase 2 

domain’s (JAK2), and it stimulates the JAK signals to STAT pathway and perhaps the 

P13K pathway (mechanism not clear). STAT3 pathway start by JAK2 phosphorylation 

encourages translocation of STAT3 towards the nucleus. STAT3 encourages gene 

reactions which reduce transcription of acetyl coenzyme-A carboxylase (ACC), 

decreasing malonyl CoA in addition to fatty acid synthesis, while accumulative fatty acid 

oxidation. Cytosolic PTPN1 dephosphorylates insulin receptors and leptin receptors to 

terminate the process [12, 13]. Hence, slight variations in the expression or action of 

PTPN1 enzyme with respect to insulin receptor could disturb insulin signaling and 

contribute to insulin resistance in T2DM patients. 

 

1.1.3. Natural source of anti-diabetic medication 

Bioactive natural products with therapeutic potential for DM are abundantly 

available and some are beyond exploration by conventional methods. Natural medicines 

are usually safe, inexpensive, and easily accessible while sometimes it’s more efficacious 
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than a synthetic medicine [14]. Several databases of natural drug-like compounds are 

useful to find important lead compounds for many disease treatments. Small molecules 

and secondary metabolites have been economically designed and synthesized by nature 

for the benefit of evolution; in other words, they have been evolutionarily selected [15]. 

Natural products contain various types of biologically relevant privileged structures that 

have saved millions of lives, which render them a continuous source of inspiration for the 

discovery of new drugs [16]. These plant-based compounds assist as excellent initial 

points for exploring biologically applicable chemical space [17]. Therefore, identification 

of natural products that are capable of modulating protein functions in pathogenesis-

related pathways is the heart of drug discovery and development [18]. Until now, distinct 

natural products have been chemically modified and driven to become Food and Drug 

Administration (FDA) approved drugs [19]. Natural products and their derivatives in 

1981 to 2010, accounted for 74.8% of all drugs approved by the FDA [20]. 

Merits of plant-based medicine have been proved in development of numerous 

drugs. Metformin FDA approved drug used from long time drug for management of 

T2DM, is derived from the guanidine which were obtained from Galegine officinalis [20]. 

Various studies in investigation of plant-based antidiabetic agents are discussed in details 

[21]. Some of these plant-based medicines are better extracted and use in crude form as is 

the common practice in traditional anti-DM medicine. In addition, the combined effect of 

the constituent anti-DM agents could be better than a single agent acting alone.  

It is necessary to get that food which gives you maximum vitamins and minerals 

required for good health. Various research displays that person affected by DM are more 

expected to use supplements as medicine than the person without DM. Summary of 
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National Health Survey demonstrated that 22 percent people affected by DM use herbal 

therapies. While additional research confirmed that 31 percent DM patients use dietary 

supplement. Various ethnic individuals in the world; Hispanics or Latino, African-

Americans population and Native Americans society also has routine of eating additional 

dietary supplements [22]. 

Insulin-like material glucokinin was present in plant sources and microbes that 

exhibited similar functions to those of insulin in vertebrates [23]. The presence of insulin-

type peptides confirms in bacteria and fungi also [24, 25]. Ample research has 

demonstrated insulin-type molecule is present in Momordica charantia [26]. They 

showed the related features of a protein of animal insulin in plants. Xavier-Filho et al. 

retrieved information that suggested insulin was present in plants. Their results suggested 

that the insulin-type protein with the conserved sequence as of bovine insulin was 

expressed in plants family Leguminosae. These old-style treatments are hopeful as anti-

DM medicine. So it is an urgent need to shift the focus of research on the way to the 

plant-based origin of insulin and it should elicit less adverse outcomes as compared to 

commercially available drugs for hyperglycemia and DM [27].  

1.2. Computer-aided drug design for diabetes mellitus 

1.2.1. Status of computer-aided drug design for fatal diseases 

The average cost of launching a new drug onto the market is estimated to 1.8 

billion dollars [28], and few drugs make it to the market. From 1999 to 2008, only 50 

compounds were approved by the FDA in the U.S., out of which 17 were identified as 

arising from target-based drug design methods [29]. This suggests that experimental 
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libraries made by conventional high-throughput screening take more time, and that the 

results are not always efficient for developing novel drugs [6]. 

Computer-aided drug design provides advantages for experimental findings, 

mechanisms of action and new suggestions for molecular structures for new synthesis, 

and it can help in making cost-effective decisions before the costly process of drug 

synthesis begins. Numerous compounds were discovered and/or optimized using 

computational methods and they have reached the clinical stage of drug development or 

have even gained U.S. Food and Drug Administration (FDA) approval [30, 31]. 

Computer-aided drug design can increase the hit rate of novel anti-diabetic drug-like 

compounds because it better uses a large chemical search space to find a suitable target 

compared with traditional high-throughput screening and combinatorial chemistry. 

Several studies have compared conventional high-throughput screening and virtual 

screening, and virtual screens had hit rates of tenfold to 1700-fold those of conventional 

screening [6, 32-36]. Computational methods are required because the amount of 

biological data has increased and manual screening against such data requires much time 

and human resources. Computer-aided drug design methods have been used in the 

development of therapeutic molecules for over three decades. The increasing use of this 

method is reflected in the number of publications about computer-aided drug design in 

fatal diseases. Publications on computer-aided drug design for the top 3 most fatal 

diseases [6, 37, 38] are shown in Figure 1.2.  
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Diabetes has the third most papers published on computer aided drug design, but 

the number of published papers for diabetes was half of what it was for cancer or HIV. 

Thus, there is still room for improvement in antidiabetic drug design with the help of 

computational techniques [6]. 

 

Figure 1.2: The number of publications related to computer-aided drug design and 

diseases. Key words used in the Google Scholar search (scholar.google.com) were as 

follows: computer-aided drug design and disease; e.g. diabetes. 
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1.2.2. Concepts of drug design, discovery and development 

The basics regarding drug design programs are identification, design of 

compounds or dataset of compounds that can generate the preferred medicinal properties. 

The success rate of any drug design scheme depends on the creativity and interplay of 

different techniques at the same ground includes biotechnology, bioinformatics, 

genomics, genetics, proteomics, structural biology, pharmacology, medicinal chemistry, 

and pharmacokinetics [39]. The anti-DM drug design is a complex process that requires 

expertise from multidisciplinary fields.  

 

Figure 1.3: Concepts of drug design, discovery and development and impact of 

computational methodologies. 
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*Hit= Virtual candidates that can fit to the target binding site. 

* Lead= a most active virtual candidate with preferred biological activity. 

* QSAR and QSPR= Quantitative structure activity/properties relationship of chemical compounds. 

The primary phase in the pipeline of drug discovery includes; Selection of a 

validated drug target. Following various phases of lead identification and optimization, 

next step is pre-clinical or animal tests, and ultimate phase of clinical trials using human 

beings [40] shown in Figure 1.3. The identification of a potent drug for diabetes which 

reaches the appropriate glycemic control is a costly procedure. Usually, a new drug with 

FDA approval needs approximate 10 years before introducing to market [41]. Possibly, 

most of the anti-DM drugs are not accepted in the late clinical phase because it exhibits 

some toxic effects or due to less efficacious. It has been stated that total cost of each drug 

discovery and development process is almost US $2.6 billion [42]. A comparatively 

cheap explanation is to use computational methods which can be used to rank target 

proteins and drug candidates that have the anticipated properties to ultimately develop an 

efficacious drug. Actually, the early twenty percent of the procedure of drug development 

is contributed by computer-aided drug design. Drug design to develop effective anti-DM 

drugs is extremely complex and expensive practice with unpredictable outcomes. To 

reduce these problems, CADD becomes gradually popular owing to low cost and least 

investment in manpower by using database resources of chemical compounds (Figure 

1.3). CADD methods are essential to aid identification of conventional drug targets 

involved in insulin signaling pathways, design of new lead compound and structural 

modification of lead compound to improve aspects of its binding affinity, 

pharmacokinetic and pharmacodynamics parameters. 
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The design typically features small molecules that can interact with target 

protein/enzymes and inhibits their function. The distinction stems from whether a 3D 

structure of a protein is available and used in the design process. Structure-based methods 

of drug design can proceed with the only existence of target protein structure and 

modeling software for building ligands in the projected binding pocket. However, further 

insights delivered by the assessment of molecular energies for the bonding process are 

the center of current structure-based methods of drug designing [43]. Ligand-based 

methods do not require 3D structure of protein but analyze the structure-activity 

relationship of chemical compounds that have been tested in the biological assay for its 

target function. One seeks patterns in the assay results to suggest potential modifications 

of the compounds yield enhanced activity. The upside is that a target structure is not 

required; the downside is that substantial activity data are needed [44]. 

1.2.3. Current computational techniques 

Drug development requires extensive clinical testing and is a costly process. 

There are two main phases involved in creating a new drug: the discovery phase and the 

clinical testing phase. In silico approaches, including virtual high throughput screening, 

and de novo structure-based rational drug design, has been established as tools in the 

discovery phase [6]. Virtual screening emerged for finding novel drug-like compounds. 

In silico virtual screening has become a reliable, cost effective and time-saving technique 

that is complementary to in vitro screening for the discovery and optimization of potent 

lead and hit compounds. There are two broad categories of screening techniques; the 

ligand-based virtual screening and receptor-based virtual screening, to select candidate 

compounds that are likely to interact favorably with the target binding sites from a 
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chemical database. The three-dimensional structure of protein or protein-ligand complex 

is helpful in lead identification using molecular modeling. Quantitative structure-activity 

relationship (QSAR), pharmacophore and biological assays can be helpful to optimize 

and design new leads. Structure-based drug design helps to provide potent and significant 

compounds more productively in the drug discovery process. Structure-based virtual 

screening is used more frequently than the ligand-based virtual screening (322 to 107 

studies) [6, 45]. 

Virtual screening uses high-performance computing to screen large chemical 

databases and prioritize compounds for synthesis. Current databases allow rapid virtual 

screening of up to 100,000 molecules per day using parallel computing techniques [46]. 

The databases of three-dimensional structures directly available for virtual screening are 

[6]:  

 Advanced Chemistry Development [47] 

 InfoChem GmgH database [48]  

 MDPI database [49]  

 National Cancer institute open database compound [50] 

 Thomson index chemicus database [51] 

 Tripos discovery research screening libraries [52] 

 ZINC database [53]  

  They contain libraries that have been experimentally determined. Several 

computer programs have been developed and used in research leading to drug discoveries 

for various diseases. They are based on computational techniques of drug design, using 
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different algorithms and scoring functions. Some of the programs for virtual screening 

and docking studies are [6]:  

 AutoDock[54]   

 CLC drug discovery work bench [55] 

 Dock [56]  

 FlexX [57] 

 FRED [58] 

 Glide [59] 

 GOLD [60] 

 MOE [61] 

Several remarkable drug design applications using docking tools have been 

mentioned in our review. Pharmacophore modeling, or ligand-based virtual screening, is 

an efficient method to increase hit rates in drug discovery research [6]. 

 Catalyst [62] 

 LigandScout 4.0 [63,64] 

 MOE (pharmacophore module) [61] 

 Phase [65] 

These are widely used computer programs for pharmacophore elucidation and virtual 

screening. The effective pharmacophore models depend on two factors: the definite 

understanding and placement of pharmacophoric features, and the alignment method used 

for overlaying the three-dimensional pharmacophore model with a set of ligand 

compounds of screened data [6, 66]. 
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QSAR methods can be used to optimize lead compounds. Modern three-dimensional 

QSAR methods involve the interaction fields around a molecule by calculating the 

interaction energy in a grid. The well-known three dimensional QSAR techniques are; 

comparative molecular field analyses [67] and comparative molecular similarity index 

analyses [68] to predict activity and correlates the biological dataset of chemical 

compounds. These approaches calculate molecular properties including steric, electronic, 

hydrogen bonding, and hydrophobic fields. Some of the programs used in research and 

that are available for two-dimensional and three dimensional QSAR analyses are [6]: 

 CODESSA  [69] 

 Dragon [70] 

 QSARpro-Vlife science [71] 

 SYBYL-Xsuit [72]  

Another type of program is the versatile and advanced software for molecular 

modeling and simulation, which has broad applications to many-particle systems, 

includes [6]:  

 AMBER [73] 

 CHARMM [74] 

 GROMAC [75] 
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1.3.  Motivation  

By IDF (International Diabetes Federation) 2015 report; ratio of diabetic patients 

in the world is one out of 11 adults. Diabetes mellitus (DM) and its related complications 

are major causes of death in various countries. Despite continuous efforts of the 

international communities to reduce the impact of DM on poor and developed countries, 

there is steadily rise in the number of diabetic patient because of high cost and low 

availability of medications (specially in poor countries).  

Available anti-DM drugs approved by FDA could not approach sufficient blood 

sugar (glucose) levels in patients suffering from DM, and there were many side effects 

affiliated with these medicines as I mentioned in chapter 1. Therefore, a new class of 

potential candidates is urgently needed. Efforts established on CADD techniques can 

mine numerous databases, generate novel and powerful virtual hits, and decrease the time 

period and cost need for discovery of novel anti-DM drug.  

Drug design efforts in this way are most expected for development of potential 

drugs if the target is novel mechanism of action. Such methods could lead to anti-DM 

prescriptions with functional and structural difference with respect to available drugs and 

shows novel approach to reach appropriate glycemic control. As DM is a disease of all 

poor and developed countries, cost effective technologies have to be used to find the 

novel and potential entities. I have identified small drug-like compounds that have 

potential and may helpful in development of new anti-DM drugs. 
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1.4.    Research goals and strategies 

By using CADD methods I want to contribute in the successful discovery of novel 

antidiabetic drug candidates. Number of anti-DM drugs and recombinant insulin are 

accessible to DM patients, but with severe side effects. My goal is to discover novel 

candidate compounds which should be safe and harmonious to human body. 

Numerous new medicines and their active ingredients are derived from plants 

because it’s cheap and safe source of drugs. Merits of plant-based medicine have been 

justified through development of some drugs. An example is the metformin, a FDA 

approved drug, used for a long time for management of Type 2 diabetes mellitus, had 

been derived from the plant source. The presence of plant proteins whose genomic 

sequences are similar to those of animal insulin encourages confirming its activity as 

insulin and evaluating its action with respect to diabetic medicine. It could produce 

therapeutically significant effects for diabetic patients.  

 Computer-based screening of large databases has shown compatibility with 

various in silico procedures such as molecular docking and pharmacophore generation. In 

silico drug-likeness and pharmacokinetic estimations adds knowledge to reduce the 

adverse outcomes of chemical compounds. Contributions of computer-aided drug design 

approaches in the identification of plant-based anti-DM virtual candidates have been 

explained in this thesis. 
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1.5. Thesis outline  

Chapter 1 introduces target disease (diabetes mellitus) with its types and 

complications. Importance of natural products used in diabetes treatment is briefly 

explained. Status of CADD for top 3 most fatal diseases (Cancer, HIV and diabetes) has 

been demonstrated. CADD approaches have contributed to successful identification of 

new anti-DM drug candidates and highlighting currently FDA-approved medicines for 

DM with the newly discovered diabetes drugs also that appeared in the development 

phase and could attain the appropriate glucose control and reduce the threat of 

hyperglycemia, which is the main cause of glucose imbalance and an important concern 

for anti-DM therapies which enhance insulin production. 

Chapter 2 focus on plant insulin protein present in Canavalia ensiformis used as 

the target protein for identification of potential anti-DM agents. Identification of most 

active compound from a set of eight compounds with desired biological activities for a 

validated molecular target has explained in detail. Analogs design of lead compound 

using functional group inter-conversion approach has demonstrated. Molecular docking 

analyses showed that the four analogs could be used as anti-DM agents. Binding energies 

and binding interactions of the analogs have been explained in detail. 

Chapter 3 focuses on pharmacophore modeling based on the information of 

known biological activities of plant-based PTPN1 compounds. Shared feature 

pharmacophore model has been established. Molecular superimposition algorithm works 

in order to organize the 3D structure of the input dataset in a way that chemical features 

of compounds located in similar positions in each pharmacophore model. 

Pharmacophore-based screening of natural compounds of ZINC database has been 
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conducted. Molecular docking analysis explained binding features of selected drug-like 

hits with the target protein. Identified hits were assessed for their aggregator potential to 

compare with previously reported aggregators. By virtual screening and in silico 

pharmacology protocols; identified a lead compound with best results is explained in 

detail.   

Chapter 4 sum-ups the achievement and originality of this research work. This 

chapter reviews the integration of computational methods used to produce fruitful results 

in the discovery of anti-DM drugs and explains my research outcomes warrant new 

protocols in the field of CADD. It concluded with significant aspects of the current 

research scheme in the area of drug discovery of plant-derived proteins and compounds 

for future functional food and medicinal research.  
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CHAPTER 2 

LEAD IDENTIFICATION AND OPTIMIZATION OF PLANT INSULIN-BASED 

ANTIDIABETES DRUGS 

2.1. Abstract  

Objective: Diabetes mellitus (DM) depends on multiple factors involved in pancreatic 

disorders and becomes the third leading cause of deaths in humans. The presence of plant 

proteins whose genomic sequences are similar to those of animal insulin has been 

demonstrated. I wished to discover anti-DM drugs having high inhibitory activity based 

on plant protein.  

Methods: Computer-aided molecular docking methods were applied using Auto Dock 

Vina software.  

Results: I have selected a plant protein with UniProt identification Q7M217 insulin in 

Canavalia ensiformis as the target protein for DM. I have identified an active lead 

compound among eight candidate compounds based on significant interactions with 

protein molecule and half-maximal inhibitory concentration (IC50) values. I have 

designed four analogs of the lead compound. Molecular docking analyses showed that the 

four analogs could be used as anti-DM agents with suitable drug-like properties as 

compared with a standard compound for the treatment of DM (aleglitazar). These analogs 

can also be used for future studies.  

Conclusion: The present study has identified an anti-DM compound, a biphenyl 

derivative, based on plant insulin. I have designed its analogs using a functional group 
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inter-conversion approach. Our computer-aided study provided information on binding 

energies and binding interactions of the analogs to predict their anti-DM activity.  

Keywords: Diabetes mellitus, Plant insulin, Lead identification and optimization, 

Computer-aided drug design 

 

2.2. Introduction 

Insulin hormone regulates blood sugar levels. If insulin is not present in the body, 

cell could not utilize the energy from blood sugar factory to uphold the metabolic events 

within a body. Frederick Grant Banting and Charles Best (1921) took out insulin from 

dogs. It was introduced into a 14-year-old male with DM in 1922 as medicine for this 

disease [76]. 

Insulin reached to approval by the US Food and administration (FDA) in 1939 

[77]. It is used in the homeostasis of blood sugar and lipids, growth and progress of tissue, 

and responds to elevated levels of glucose and amino acids in blood. It regulates 

metabolism by tissue-specific mechanisms such as protein phosphorylation and altered 

functions and shows different gene expression. The physiological discorded of T2DM; by 

insulin resistance includes pancreatic beta cells, skeletal muscles, liver and fat storing 

tissues. Similar to insulin secretion and glucagon suppression, the combination of 

stimulation (high post-meal level of blood glucose) is owned by humans to maintain 

plasma glucose levels at about ≈5 mmol [77-80]. Glucose-based insulin regulatory 

mechanism of beta cells has been described [81]. Pancreatic beta cells respond to 

increased levels of sugar/glucose in plasma by secretion of insulin. Protein-facilitated 
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glucose transporter 2 on the membrane of beta cells has high Michaelis constant. The 

maximum rate can be achieved by a system that allows fast equilibration of glucose 

across the membrane. Glucokinase promotes the phosphorylation of glucose and 

encourages conversion to a glycolytic cycle, an important step in determining glucose-

stimulated insulin secretion [81]. The released insulin connects with insulin receptor (IR), 

a transmembrane heterodimer of twice alpha and beta subunits retained by a disulfide 

bonding. Isoforms IR type 1 and IR type 2 have various affinities to bind with insulin 

with the extracellular domains. Fluctuating affinity for insulin has advantage over insulin 

resistance, but it is a controversial matter and still incompletely understood. Insulin 

binding facilitates the interaction and autophosphorylation of three tyrosine residues in 

the control domain and raises the activity of the enzyme tyrosine kinases. Then, 

intracellular phosphorylation of insulin receptor substrate, (IRS type 1) takes place. IRS 

type 1 is a typical adapter protein expresses four isoforms, of which IRS type 1 and IRS 

type 2 get involved in the balance of glucose and glucagon to control levels of blood 

glucose and T2DM [82, 83]. 

Insulin hormone in plants is not accepted by plant science researchers [84]. 

Insulin is the main glucose controlling hormone and it was originally isolated from 

pancreatic tissue of an animal [85]. Plant life does not carry pancreas and so glucose does 

not precede major metabolites. Several studies suggested that chemicals similar to animal 

insulin exist in plants and extracts from these chemical substances alter the metabolism of 

the seedlings, so it was proved that insulin protein is present in plants [86, 87]. Khanna 

and his colleagues stated that the similar to insulin, glucokinin is present in plants and 

microbes that exhibited similar functions to those of insulin in vertebrates [23]. Therefore, 
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in some studies, insulin-like peptides have been reported in the living organism such as 

bacteria and fungi [24, 25]. 

Further studies which proved the possibility of the existence of insulin-type 

molecules in Momordica charantia was conducted by Ng and his colleagues [26]. It 

proves that similar features of a protein of animal insulin found in plants. Momordica 

charantia when co-administered with the conventional drugs and tested in clinical studies 

for its combined effects proves that it produced positive interactions with the drugs and 

significantly reduce the serum glucose at half of the regular dose with metformin [88], 

while with glibenclamide also shows remarkable reduction in serum glucose at half of 

regular dose of glibenclamide [88]. In other experimental studies, it is proved that 

combined therapy of metformin with Momordica charantia presented improved 

hypoglycemic activity in normal, streptozotocin induced- and alloxan-diabetic rats [89, 

90]. Positive interactions of plant extracts with antidiabetic drugs could improve the 

situation of diabetes worldwide in terms of enhanced drug bioactivity and side effects. 

The “Human Genome Project” brought revolution which permitted comparison 

analyses of sequence of nucleotides and proteins through bioinformatics approaches to 

identify common proteins that could exist across different living organisms [91, 92]. 

Xavier-Filho and his fellows retrieved the information that suggested insulin was 

present in plants. Their results suggested that insulin protein express common amino-acid 

sequence as bovine insulin in plants of family Leguminosae [93]. Koona and his fellows 

tested this assumption that plant species contain sequences similar to that of animal 

insulin by phylogenetic analyses of different categories of insulin. They predicted protein 

domains and demonstrated that molecules similar to insulin are present in plant species. 
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In addition, domains common to the sequence of insulin are present in Bauhinia purpurea, 

Canavalia ensiformis, and Vigna unguiculata. Proteins similar to insulin may have role in 

the development of plants and show metabolic activities [94]. 

Bauhinia purpurea (orchid tree) is a member of family Leguminosae. It is an 

average-size deciduous tree, the components of which are used as medicine for body pain, 

restlessness, fever, dropsy, rheumatism, seizures, and septicemia [95]. Plant bark 

functions as an astringent in the management of diarrhea and its isolated chemicals are 

useful in the treatment of stomach ulcers. The plant has pharmacologic actions on the 

central nervous system and has cardiotonic, hypoglycemic, lower blood cholesterol, 

oxidation inhibition and anti-hepatotoxicity activities [96]. Leaves of orchid tree are 

widely used to cure abrasions and muscular damages [97]  

Canavalia ensiformis (horse bean/ Jack beans) is a member of family 

Leguminosae. It is found in the Central America and West Indian islands. Jack beans 

cultivation widely found in the humid tropical region of Asia and Africa. Canavalia 

ensiformis seeds have been reported to possess anti-hypercholesterolemic and 

hypoglycemic properties [98]. Its extracts have been tested on alloxan-induced DM rats, 

showed good activity against hyperlipidemia and hyperketonemia, and it has been shown 

to be potential anti-DM agents. Oral administration of an aqueous extract of the seeds of 

Canavalia ensiformis has been shown to reduce urinary and blood levels of glucose and 

to elevate levels of triacylglycerol, ketonic group, and level of cholesterol related with 

DM [99]. 

Vigna unguiculata (cowpea) is a member of family Leguminosae found in various 

regions of Asia and Africa [100], owns a three-lobed leaf and long slender pods. It 
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reaches maturity in sixty days when sowed. The protein sequence of Vigna unguiculata 

shows similar sequence to bovine/animal insulin to sequence of the plant-insulin 

extracted from the cowpea seed-coat [27, 101]. These old-style treatments have 

encouraging future in DM management. Adverse effects were reported as compared in 

commercial drugs available for hypoglycemia [27]. In the present study, I carried out 

bioinformatics studies of molecular docking to identify new drugs for DM treatment 

using plant extracts with similar sequences to those of animal insulin.  

I employed a ligand-based drug design and revealed diverse classes of small drug-like 

compounds to be potential candidates for DM treatment. Moreover, I computed 

molecular modeling and docking studies for the lead compound, which was identified 

from the test dataset of anti-DM compounds [102] and modified for optimization of its 

activity. These results will provide a deeper understanding of the inhibitory behavior of 

the compound and be valuable in the development of anti-DM drugs.  
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2.3.  Materials and methods  

 

Figure 2.1: Schematic workflow summarizing the methods used to identify plant 

insulin-based antidiabetic drugs. 

Diabetic mellitus was selected as target disease to start this study. As results of 

human insulin sequence similarity search by BlastP [103], Canavalia ensiformis found 

with highest sequence similarity of 56% with 88.2 maximum bits score. Anti-DM 

compounds were retrieved from my previous study [102]. Insulin protein isolated by 

plant source was subjected to identify the most active anti-DM compound by molecular 

docking and detail interaction analysis. Lead compound was identified and optimized by 

analogs design using functional group inter-conversion approach. Schematic workflow 
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summarizing computer-aided drug design methods used in this study is shown in Figure 

2.1. 

BlastP [103] is used to for identification of homologs of human insulin by using 

the insulin sequence with 110 amino acid length as input query sequence. Query 

sequence was submitted in FASTA format and results retrieved in the HTML format.  

Blast search for the identical sequences present in the database with respect to query 

sequence. While performing BlastP sequence similarity search using NCBI portal. The 

results were given in graphical format showing the most identical hits, domain 

knowledge and family of protein and also provide the table of sequence identical to the 

input query sequence with certain Blast scores and similarity percentages, with the 

alignment for each sequence with respect to query sequence shown in Table 2.1 and 2.2.  

Molecular docking analyses were undertaken to evaluate the most preferred 

geometry of protein–ligand complexes. Anti-DM compounds were analyzed for a target 

protein binding using Auto Dock v 4.0 and Auto Dock Vina [54, 104]. The docking phase 

is, in general, meaningful with its two components: target protein and ligand. Molecular 

docking simulations identify native or similar to native configurations of docked 

complexes. 

Docking steps were conducted in a specific sequence. Briefly, water molecules 

were excluded from target protein structure, and then the input was provided to analytical 

docking tool. Marsili-Gasteiger partial charges were calculated for the target protein by 

Auto Dock v 4.0 [54, 104]. And then the protein structure was examined for the missing 

atoms. So when missing atoms confirmed, hydrogen atoms were added by selecting the 

default parameters. After these modifications, the protein structure was obtained, and the 
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ligand was prepared for docking experiment. Marsili-Gasteiger partial charges were 

calculated for the ligand [105]. Then some moiety exhibiting torsions in ligands was 

defined. To choose torsion for flexible docking, rotatable connections were altered into 

non-rotatable connections and vice versa. The number assigned for active torsions was 

marked as the most atoms. After preparation of protein and a ligand structure, an 

inflexible residue was set by utilizing the GRID modules of Auto Dock v4.0. A flexible 

macromolecule was then obtained. Auto Dock Vina was used for molecular docking. 

This software outputs various energy conformations. Among these, the lowest energy 

conformation against each docked ligand was selected and docking results for the 

selected dataset are generated. 

For understanding the results of molecular docking, the therapeutic target protein was 

docked with the test set, and the interactions between of binding pocket of the protein 

molecule and ligands must be found. There are three types of interactions found in the 

docked complex: hydrophobic interactions, ionic interactions, and hydrogen bonding. 

Interaction analyses were conducted by using Visual Molecular Dynamic (VMD) 

program [106]. The interaction results were considered within a distance of 4Å. The 

detail binding behavior of each docked complex was analyzed (Table 2.2). 

 

2.4.  Results and discussion  

Target identification and selection is an important step in initiating drug design. The 

plant insulin protein was used as the target protein in this study. I extracted plant-insulin 

3D structure from the public source of MODBASE database [107] to examine it as a 

substitute source of human insulin protein. The three-dimensional (3D) structure of 
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protein isolated from Canavalia ensiformis with identification number Q7M217 in figure 

2.2 shows two representations. 

 

Figure 2.2: Structure of plant insulin extracted from Canavalia ensiformis, 

identification number Q7M217 [A] protein hydrophobic surface and [B] ribbon 

representations generated by chimera software.   

The insulin-like growth factor segments of human insulin are conserved to the 

insulin sequence in Bauhinia purpurea, Canavalia ensiformis and Vigna unguiculata [94]. 

These plants are members of the class: Leguminosae. I selected Canavalia ensiformis for 

testing as an insulin source because it has been tested in wet laboratory experiments and 

because it has a highly identical homolog to human insulin protein (table 2.1 & table 2.2). 

In a wet laboratory experiment, a protein extracted from Canavalia ensiformis 

was acknowledged by anti-human insulin antibodies that lower the level of blood glucose 
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in alloxanized mice (suggesting that the plant insulin has biologic potential against DM), 

and found to have evolutionary characteristics similar to those of human insulin [108].  

The reason to select the most identical insulin-like protein Canavalia ensiformis 

in this study is depicted by sequence similarity search. Results summary of human insulin 

sequence similarity search by BlastP [103] is shown in table 2.1 and the align sequences 

are shown in table 2.2. Canavalia ensiformis shows the highest sequence similarity of 

56% with 88.2 maximum bits score. While Vigna unguiculata with 72.4 bits score shows 

49% sequence similarity and Bauhinia purpurea with 65.5 bits score shows 67% 

sequence similarity with human insulin protein. 

BlastP a freely available web tool searches for the identical and specific hits as 

homologs. They represent a reliable association between the protein query sequence 

(human insulin sequence) and a domain model. Figure 2.3 displays putative conserved 

domain and information of the superfamily retrieved against the query sequence used as 

input to BlastP. Conserved IIGF-insulin-like domains shown in dark green bar and IIGF-

like superfamily shown in light green bar concluded the function of the model protein. 

IIGF-like superfamily is a large class of evolutionary proteins which own diverse 

hormonal activities and its subfamily is insulin and insulin-like growth factors.  

 

Figure 2.3:  Graphical summary of the database sequence aligned to the query 

sequence.  
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Table 2.1: Summary of the alignment results of three top scored plant insulin hits 

against human insulin by BlastP. 

 
Top 

scored 

hits 

Accession 

ID 
Source 

Max 

score 

Total 

score 

Query 

cover 

E 

value 
Identity Positives Gaps 

1 A59151 

Canavalia 

ensiformis 

(jack bean) 

88.2 88.2 78% 1e-22 56% 56% 40% 

2 P83770.1 

Vigna 

unguiculata 

(cowpea) 

72.4 72.4 78% 3e-16 49% 50% 40% 

3 721138A 

Bauhinia 

purpurea 

(camel's foot 

tree) 

65.5 110 58% 1e-13 67% 79% 43% 

 

Table 2.2: Sequence alignment for human insulin and three top scored plant insulin 

hits. 

 

Top scored 

hits 

Protein description and sequence alignments against Query (human insulin) 

1 Insulin precursor - jack bean (fragments) / Canavalia ensiformis (jack bean) 

(Sequence length: 51) 

 
Query  25   FVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEG  84 

            FVNQHLCGSHLVEALYLVCGERGFFYTPK 

Sbjct  1    FVNQHLCGSHLVEALYLVCGERGFFYTPKA------------------------------  30 

 

Query  85   SLQKRGIVEQCCTSICSLYQLENYCN  110 

                 GIVEQCC S+CSLYQLENYCN 

Sbjct  31   -----GIVEQCCASVCSLYQLENYCN  51 

 

2 RecName: Full=Insulin-like protein; Contains: Rec Name: Full=Insulin-like protein B chain; 

Contains: Rec Name: Full=Insulin-like protein A chain / Vigna unguiculata (cowpea) 

(Sequence length: 51) 

 
Query  25   FVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEG  84 

            FVNQHL GSHLVEALYLV GERGFFYTPK 

Sbjct  1    FVNQHLXGSHLVEALYLVXGERGFFYTPKA------------------------------  30 

 

Query  85   SLQKRGIVEQCCTSICSLYQLENYCN  110 

                 GIVEQ   S+ SLYQLENY N 

Sbjct  31   -----GIVEQXXASVXSLYQLENYXN  51 

 

3 Insulin / Bauhinia purpurea (camel's foot tree) 

(sequence length: 51) 

 
Query  12  ALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKT  54 

           ++ +L+  +    F NQHLCGSHLVEALYLVCGERGFFYTPK 

Sbjct  9   SVCSLYQLENYCNFANQHLCGSHLVEALYLVCGERGFFYTPKA  51 
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I used aleglitazar (Roche, Basel, Switzerland) [109] with a half-maximal 

inhibitory concentration (IC50) value of 0.019 μM as a standard drug for DM. I collected 

data for aleglitazar from PubChem [110], which provides authenticated chemical 

structure and all related information of drugs and which is organized by the US National 

Institutes of Health. Aleglitazar is a type of sensitizer used for T2DM treatment to reduce 

the complications of cardiovascular morbidity and mortality. In T2DM patients, 

aleglitazar can control levels of lipids and glucose in a synergistic manner while eliciting 

limited side effects and toxicity [110]. I designed and evaluated novel candidate 

compounds based on a comparison with aleglitazar.  

  I generated a test dataset of eight compounds (table 2.3) by perusing studies of 

anti-DM drugs [102]. The dataset was considered highly active owing to their low IC50 

values (μM). The rule of five [111] used to evaluate drug-likeness of chemical 

compounds and the results integrate the pharmacokinetics of these compounds from a 

previous study [112]. Compound structures in the test dataset were made by Chem Draw 

Ultra 8.0 [113]. The compounds and their bioavailability in the form of IC50 values are 

listed in table 2.3. 

I evaluated interactions of compounds with protein molecule using Auto Dock 

and Auto Dock Vina [104]. By employing docking analyses, different confirmations of 

compounds were provided as docked complex with the target protein molecule. I 

generated ten most active conformations for each ligand ranked based on binding 

affinities of the ligand with the protein molecule. I selected the optimal confirmation 

from these ten confirmations (having a minimum value of the root-mean-square 
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deviation) based on the computed energies of compounds docked with the protein 

molecule for analyses of their binding behavior.  

Furthermore, I analyzed the two-dimensional (2D) and three-dimensional (3D) 

structures of the ligand and plant target protein. Amino acids involved in the interactions 

in the relevant binding pocket were studied. The test dataset was docked with the target 

protein. Amino acids in the protein pocket were identified within a distance of 10Å. The 

residues beneficial for interactions and comprise protein pocket were:  HIS4, HIS5, 

HIS10, ALA14, ALA30, PHE24, PHE25, VAL12, TYR16, TYR26, TYR49, THR27, 

CYS7, CYS36, CYS37, CYS41, CYS50, LYS29, LEU3, LEU11, LEU17, LEU43, 

LEU46, VAL40, GLN8, GLN35, GLN45, GLY8, GLY31, GLU13, ASN3, ASN48, and 

SER39 (table 2.3). 

Table 2.3: Structures and binding interactions of the standard drug, aleglitazar, and 

eight test compounds (T1-T8) including amino acid data in the target protein pocket 

and binding energies 

Name Structure 
IC50 

(µM) 

Hydrogen bonding Ionic interaction Hydrophobic interaction 
Binding 

Energy 

(Kcal/mol) 
Amino acids 

Dist

ance 

(Å) 

Amino 

acids 

Dista

nce 

(Å) 

Amino acids 
Distan

ce (Å) 

Aleglita

zar 

 

0.019 O-HIS10:NE2 3.21 None 

C-HIS10:CD2 

C-ALA14:CA 

C-ALA14:CB 

C-LEU11:CD2 

C-LEU11:CD2 

C-CYS7:CA 

C-SER39:C 

C-VAL40:CA 

C-VAL40:CA 

3.82 

3.93 

3.71 

4.03 

3.83 

3.82 

3.90 

3.94 

3.73 

-7.7 
O

N

O
S

O

O

HO
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T1 

 

 

0.53 S-GLN8:N 4.00 None 

C-TYR26:CD2 

C-TYR26:CB 

C-PHE24:CE2 

C-PHE24:CZ 

C-PHE24:CZ 

C-TYR16:CB 

C-TYR16:CB 

C-TYR16:CD2 

C-TYR16:CD2 

C-TYR16:CE2 

C-VAL12:CG1 

C-VAL12:CG1 

C-VAL12:CG2 

C-VAL:C 

3.95 

3.85 

3.95 

3.75 

3.89 

3.45 

4.00 

3.90 

3.75 

3.69 

4.00 

3.94 

3.71 

3.75 

-8.5 

T2 

 

 

0.48 
O-SER39:N 

N-CYS37:O 

3.95 

3.55 
None 

C-GLU13:C 

C-ALA14:CA 

C-ALA14:CB 

C-LEU43:CD2 

C-LEU46:CD2 

C-LEU11:CD2 

C-VAL40:CG1 

C-VAL40:CB 

C-VAL40:CB 

C-VAL40CG2 

3.71 

3.40 

3.40 

3.40 

3.76 

4.00 

3.96 

3.99 

3.46 

3.77 

-7.8 

T3 

 

 

1.10 

O-GLN45:NE2 

S-ASN48:OD1 

O-GLN45:N 

3.22 

3.47 

3.89 

None 

C-TYR49:CE1 

C-TYR49:CE1 

C-ASN48:CB 

C-ALA30:CA 

C-PHE25:CD2 

C-GLN35:CD 

3.75 

3.75 

3.29 

3.80 

3.84 

3.96 

-7.7 

T4 

 

 

 

1.24 HN-TYR26:O 3.91 None 

C-TYR16:CD2 

C-TYR16:CB 

C-GLU13:CG 

C-GLU13:CD 

C-VAL12:CB 

C-VAL12:CG1 

C-TYR26:CB 

3.58 

3.78 

3.51 

3.97 

3.66 

3.85 

3.75 

-7.5 

T5 

 

 

0.22 

O-CYS7:SG 

O-ASN3:ND2 

H-ASN3:ND2 

4.02 

3.08 

2.81 

NH-

GLU13:O 
3.99 

C-GLU13:CB 

C-ALA14:CB 

C-HIS10:C 

C-HIS10:CB 

C-LEU11:CD2 

C-LEU46:CD2 

C-CYS41:CB 

C-LEU11:CD2 

C-LEU6:CD2 

3.77 

3.91 

3.84 

3.79 

3.75 

3.45 

4.04 

3.75 

3.99 

-8.1 

O

HO

S
N

S

O

O

HO

S
N

S

O
O

O

HO

S
N

S

ON
O

S

HN

O

S

O

O

N

S

N

COOH

HOOC

O
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T6 

 

 

0.08 

NH-TYR26:O 

O-SER9:NH 

S-CYS41:NH 

 

4.04 

3.24 

3.81 

 

NH-

HIS5:0 

NH-

HIS5:ND

1 

1.97 

3.06 

C-HIS5:CA 

C-HIS5:ND1 

C-TYR26:CB 

C-TYR26:CE 

C-VAL12:CB 

C-VAL12:CG1 

C-VAL12:CG1 

C-VAL12:CG2 

C-TYR26:CB 

C-TYR26:CE 

C-PHE24:CE2 

C-PHE24:CZ 

3.88 

4.00 

3.06 

3.81 

3.71 

3.67 

3.86 

4.00 

3.94 

3.67 

3.67 

3.90 

-5.9 

T7 

 

 

0.005 

O-LEU11:N 

H-ASN3:ND2 

O-ASN3:ND2 

H-ASN3OD1 

H-CYS36:O 

H-SER39:O 

H-VAL40:N 

H-CYS41:N 

3.73 

2.62 

3.15 

3.74 

3.47 

3.55 

3.71 

3.95 

None 

C-LEU43:CD2 

C-ALA14:CA 

C-ALA14:CB 

C-ALA14:CB 

C-VAL40:CG2 

3.76 

3.71 

3.73 

3.66 

3.82 

-7.6 

T8 

 

 

0.13 
O-HIS5:N 

N-TYR26:OH 

3.67 

3.17 
None 

C-GLY8:C 

C-VAL12:CG1 

C-VAL12:CG2 

C-PHE24:CE2 

C-PHE24:CZ 

C-TYR26:CB 

C-TYR26:CB 

C-TYR26:CB 

C-TYR26:CZ 

C-TYR26:CZ 

3.84 

3.87 

3.79 

3.78 

3.56 

3.65 

3.90 

3.64 

3.92 

3.92 

-8.0 

 

I considered most of the essential amino acids present in active site of plant 

protein that was similar to human insulin protein. One study reported insulin in the testa 

of Canavalia ensiformis [108]. Our docking results revealed that the residues present in 

the active site of target protein involved in the interaction with the selected ligands for 

DM.  

I selected the best conformation of the docked complex out of ten poses based on 

the criterion of minimum binding affinity and identified and generated the interactions by 

VMD [106] (table 2.3). VMD software enables labeling and provides the calculation of 

OH

N

HN

O

HN
S

O

O

NH

S

Br

O

O

OH

OH

O

N

S
O

O

N
O

HN
S

O

O

N

F
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the distance between residues of the particular ligand in a protein active site. Important 

interactions identified in the test dataset included ionic (COOH-NH3 or NH2-COOH), 

hydrogen (N-O, O-N, O-O) and hydrophobic interactions (C-C). All interactions were 

calculated < 4Å of the distance between the active residues of the ligand and protein.  

I selected a lead compound, which is an anti-diabetic synthetic compound with 

publication number: WO2007067614 shown as T6 in table 2.3. from the dataset of eight 

compounds that had desired biologic activities on a validated molecular target. In general, 

a lead compound can be modified to produce another compound with a better profile by 

removing unwanted properties to avoid unwanted side effects.  

Compounds used as potential leads can be synthetic and semi-synthetic 

compounds, as well as proteins in marine organisms, plants and animals [114]. The lead 

compound I selected was from the synthetic source in the test dataset (table 2.3). I 

conducted lead identifications by a computer-aided approach involving virtual screening, 

pharmacophore mapping, and molecular docking analyses [112,115-116]. 

In general, an appropriate potential drug candidate is a compound with fewer side 

effects or is more efficacious [117]. The lead compound may not necessarily become a 

drug candidate. To avoid such a situation, lead optimization can be advantageous in lead 

identification. One pharmaceutical company reported on the methods of the identification 

and optimization of lead compounds [118]. I identified a lead compound based on the 

binding interactions, lowest inhibitory values in terms of IC50, and docking score. Figure 

2.4 demonstrate the binding behavior of lead compound with target protein. I made 

analogs of the compound to obtain the most active anti-DM drugs. Table 2.4 

demonstrates the analogs designed by modifying the functional groups to make the 
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compound more efficacious. The designed analog compounds from this study need to be 

tested for ADMET properties. Four analogs were recommended after analyses of the lead 

compound. Table 2.4 demonstrates analogs structures designed by lead compound with 

their International Union of Pure and Applied Chemistry nomenclature generated by 

ChemDraw Ultra 8.0 [113]. These analogs were created by addition or removal of the 

structural moiety or by replacement of each moiety with another present in the structure 

of the most active compound. First analog had a functional group comprising a sulfur 

atom and a hydrogen atom (-SH) at the position of (-OH). The second analog was made 

by a nucleophilic substitution (though its activity was dependent upon the electronic 

nature of the substituent). The third analog was made by the reduction of a ketone group. 

The fourth analog was made by removal of a steric blocker to improve the binding 

character of the compound. This method of analog design improved binding interactions 

with the target protein. Table 2.4 also listed the possible interactions and binding energies 

of the analog set within the distance of 10Å of a pocket of the protein molecule. The 

target protein (figure 2.2) showed a better binding interaction with our test dataset. Thus, 

I proposed it as a candidate to confirm its activity in future studies. 

 

 

 

 

 

 

 



 

 

42 
 

 

Figure 2.4: Binding interaction of docked lead compound T6 with active-site 

residues of target protein characterized in bond formation. Red highlights hydrogen 

bond acceptors and blue highlights the hydrogen bond donors, white highlights 

hydrogen bonds and yellow highlights halogens atom. 

 

 

 



 

 

43 
 

Table 2.4: Analogs of the lead compound (T6) along with interactions and binding 

affinities of the analogs with those of the target protein pocket 

No. FGI Structure and IUPAC name 

Hydrogen bonding Ionic interaction Hydrophobic interaction 

Binding 

Energy 

(Kcal/mol) Amino acids 

 

Distance 

(Å) 

Amino acids 

 

Distance 

(Å) 

Amino acids 

 

Distance 

(Å) 

1 

Functional 

group 

conversion  

5-[3-Mercapto-5-(1H-

pyrrol-2-yl)-phenyl]-1,1-

dioxo-1λ6-

[1,2,5]thiadiazolidin-3-one 

NH-CYS36: O 

O-CYS41:NH 

S-CYS41:NH 

1.76 

2.80 

3.81 

None 

C-HIS10:CG 

C-HIS10:CG 

C-CYS7:CA 

C-CYS7:CA 

C-LEU11:CD2 

C-ALA14:CB 

3.90 

3.81 

3.66 

3.78 

3.88 

3.63 

-5.8 

2 
Nucleophic 

substituent 

 

 

5-(3-Furan-2-yl-5-hydroxy-

phenyl)-1,1-dioxo-1λ6-

[1,2,5]thiadiazolidin-3-one 

NH-SER39: O 

NH-CYS41: O 

NH-CYS41:SO 

3.41 

3.52 

3.95 

None 

C-LEU3:CD2 

C-ALA14:CB 

C-LEU11:CD2 

C-CYS7:C 

C-CYS7:CA 

C-CYS7:CA 

3.66 

3.67 

3.96 

3.98 

3.60 

3.93 

-5.9 

3 
Reduction of 

ketonic group 

 

3-(1,1-Dioxo-1λ6-

[1,2,5]thiadiazolidin-2-yl)-

5-(1H-pyrrol-2-yl)-phenol 

NH-TYR25: O 

O-SER9: N 

S-CYS41: S 

3.99 

3.24 

3.89 

NH-HIS5:0 3.66 

C-CYS7:CA 

C-CYS7:CA 

C-HIS5:CA 

C-HIS5:ND1 

C-VAL12:CG1 

C-VAL12:CG1 

C-VAL12:CG2 

C-TYR26:CB 

C-TYR26:CE 

3.76 

3.80 

4.00 

3.06 

3.86 

3.00 

3.34 

3.77 

3.37 

-5.9 

SH
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4 
Removal of 

steric blocker 

 

 

 

1-[3-Hydroxy-5-(1H-pyrrol-

2-yl)-phenyl]-imidazolidin-

4-one 

NH-TYR49: O 

NH-CYS50: O 

3.21 

3.51 

None 

C-LEU3:CA 

C-ALA14:CB 

C-CYS7:CA 

C-CYS7:CB 

C-LEU11:CD2 

3.22 

3.51 

3.76 

3.52 

3.99 

-5.9 

 

Table 2.5 enlists the drug-like properties of designed analogs with respect to standard 

anti-DM drug. These four analogs are small drug-like molecules following Lipinski’s 

[111] and veber’s rules [119] of drug-likeness. Lipinski’s rules for druglikeness limits 

molecular weight (MW) to less than 500 Dalton, logP values to less than 5, hydrogen 

bond acceptors (HBA) to less than 10, and hydrogen bond donors (HBD) to less than 5 

and veber’s rules limits rotatable bonds (RB) to less than 10 while value of polar surface 

area (PSA) to less than 120 Å. By the universal idea an oral biologically efficacious drug 

candidate should not violate except one property as described [111].  

Table 2.5: Summary of drug-like properties of analogs and a standard antidiabetic 

drug 

Chemical 

compounds 
MW LogP HBA HBD PSA RB 

Analog - 1 309.02 0.244 6 2 66.1 2 

Analog - 2 294.03 -0.778 7 2 44.73 3 

Analog - 3 279.07 -0.439 6 3 61.53 3 

OH

N

HN

O

HN
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Analog - 4 243.1 -0.313 5 3 47.53 3 

Aleglitazar 437.51 5.1 7 1 110 9 

 

 

2.5.  Conclusion  

Natural products have been suggested to be the best sources of medicines for the 

treatment of DM [120]. Nearly 80% of the world population use traditional medicines: 

they prefer plant-based drugs for primary health care [121]. Safe and effective use of 

natural products can ensure that plant-based medicines are more harmonious with 

biologic systems. I identified an anti-DM compound based on plant insulin: a synthetic 

compound with publication number: WO2007067614 shown as T6 in table 2.3. I 

designed its analogs using a functional group inter-conversion approach. Our computer-

aided approach provided information on binding energies and binding interactions of the 

analogs to predict their anti-DM activities. Several studies highlights the combined 

treatments of plant extracts and conventional drugs significantly enhanced the effect with 

respect to improved plasma glucose and insulin levels as compared to individual drug 

treatment. So this plant-based study could be helpful in future to understand the plant 

insulin and antidiabetic drug interactions.  
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CHAPTER 3 

AN INTEGRATED COMPUTATIONAL APPROACH FOR PLANT-BASED 

PROTEIN TYROSINE PHOSPHATASE NON-RECEPTOR TYPE 1 

INHIBITORS 

 

3.1. Abstract  

Background: The protein tyrosine phosphatase non-receptor type 1 (PTPN1) is a novel 

target for the type 2 diabetes mellitus. According to the International Diabetes Federation 

2015 report, one out of 11 adults suffers from diabetes mellitus globally.  

Objective: Current anti-diabetic drugs can cause life-threatening side-effects. The 

present study proposes a pipeline for the development of effective and plant-derived anti-

diabetic drugs that may be safer and better tolerated. 

Methods: Plant-derived protein tyrosine phosphatase non-receptor type 1 inhibitory 

enzymes possessing antidiabetic activity less than 10μM were used as a training set. A 

common feature pharmacophore model was generated. Pharmacophore-based screening 

of plant-derived compounds of the ZINC database was conducted using ZINCpharmer. 

Screened hits were assessed to evaluate their drug-likeness, pharmacokinetics, detailed 

binding behavior, and aggregator possibility based on their physiochemical properties 

and chemical similarity with reported aggregators. 

Results: Through virtual screening and in silico pharmacology protocols isosilybin 

(ZINC30731533) was identified as a lead compound with optimal properties. This 

compound can be recommended for laboratory tests and further analyses to confirm its 

activity as PTPN1 inhibitor. 
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Conclusion: The present study identified a plant-derived anti-diabetic virtual lead 

compound with the potential to inhibit PTPN1, which may be helpful to enhance insulin 

production. This computer-aided study could facilitate the development of novel 

pharmacological inhibitors for diabetes treatment. 

Keywords: Computer-aided drug design, diabetes mellitus, flavonoids, isosilybin, 

protein tyrosine phosphatase non-receptor type 1, common feature pharmacophore 

modeling, molecular docking, pharmacokinetics. 

 

3.2. Introduction 

 Plant-based medicine is a way to treat diabetes mellitus (DM). Traditional 

medicine has employed a huge collection of plant-derived treatments effective in the 

treatment of blood glucose imbalance and diabetes mellitus [122,123]. Experimental 

studies have shown that the sequence of the insulin-like growth factor domain of animal 

insulin protein is similar to the plant-insulin sequence found in Canavalia ensiformis, 

Vigna unguiculata and Bauhinia purpurea [94]. Computer-aided molecular docking 

methods were applied to human insulin protein [116] and plant insulin present in 

Canavalia ensiformis to identify anti-diabetic compounds [76]. 

 In our previous study, I discussed FDA approved DM medicines; insulin, 

biguanides, second generation sulfonylureas, alpha- glucosidase inhibitors, glinides, 

glucagon-type peptide 1 receptor as agonist activity, thiazolidinediones, bile-acid 

sequestrants, newly developed drugs based on dipeptidyl peptidase-4 (DPP-4) inhibitors, 

dopamine activators, amylin analogs, and sodium-dependent glucose cotransporter-2 

inhibitors in detail [6]. However, currently available anti-DM drugs possess side effects 
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such as headache, stomach upset, peripheral edema, increase in weight, and hypotension 

[124]. Therefore, compounds with ideal properties to stimulate insulin signaling pathway 

are required [125]. 

 Molecular targets for pharmacological treatments of DM has been studied to 

develop unique anti-DM agents, including protein tyrosine phosphatase non-receptor type 

1 (PTPN1) previously also known as protein tyrosine phosphatase 1B (PTP1B), 

peroxisome proliferator-activated receptor gamma, pyruvate dehydrogenase kinase, beta 

3 adrenoceptors, glycogen synthase kinase 3, DPP-4, cannabinoid receptors, and fructose 

bisphosphatases enzymes [126, 127]. The protein tyrosine phosphatases accelerate the 

protein tyrosine dephosphorylation in the regulatory mechanism of insulin via 

dephosphorylation of activated auto phosphorylated insulin receptor and downstream 

substrate proteins [128]. The PTPN1 has been a target for management of the diabetes 

disease and obesity [129], and PTPN1 knockout mice had insulin sensitivity and 

tolerance to diet-induced obesity [11, 130]. Recent technical advances in biochemical 

synthesis proved the discovery of potential synthetic PTPN1 candidates, but 

complications for example polarity besides less enzyme selectivity remained to be 

controlled [131]. The uses of plant-derived products have appreciated as an alternative 

source for discovery of PTPN1 inhibitory candidates [132]. In vitro and in vivo methods 

confirmed that natural products are beneficial for the discovery of new and potential 

PTPN1 inhibitors [117].  

 In the present study, I discussed structural, biological and molecular activities of 

diverse plant-derived PTPN1 compounds reported in last decades. I use computer-aided 

drug design (CADD) strategies for identification of novel compounds having PTPN1 
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inhibitory activity from the ZINC dataset of plant-derived compounds, which will be 

beneficial for medicinal chemist and pharmacologists to develop new PTPN1 inhibitors 

with anti-DM activity [133].  

 

3.3.  Material and methods 

3.3.1.  Pharmacophore modeling and computer-based screening of ZINC database 

 In recent years, various experimental approaches have been developed to 

investigate flavonoids with PTPN1 inhibitory activity by incorporating novel approaches 

to previously tested models to improve their anti-DM activity. Botanical information, 

chemical structure and physicochemical properties of natural flavonoids with PTPN1 

inhibitory activity were selected from reported data (Table 3.1) [134-139]. Eleven 

compounds were used as a training set based on their physiochemical properties, 

Lipinski’s filter, and IC50 values less than 10μM. These 11 compounds were used for 

pharmacophore modeling using LigandScout 4.1 [63]. ChemDraw Ultra 8.0 software 

[113] is used for sketching chemical structure of training dataset and saved in Protein 

Data Bank (PDB) format. Consequently, these files were used as input to LigandScout 

4.1. A pharmacophore fit model was generated using the 11 compounds of the training 

set and used for screening of the plant-derived set of ZINC database. Table 3.2 shows 

pharmacophore features of the training set and common feature of a selected 

pharmacophore model. Pharmacophore features of the most appropriate model were also 

generated for each compound displayed in Table 3.3.  

 Screening procedures were performed using a shared feature pharmacophore 

modeling approach for best flexible conformation exploration using ZINCpharmer 
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[140].The identified hits as an outcome of the database search were subjected to drug-like 

filtration. Data Warrior [141] was used to calculate the physiochemical properties and 

toxicity estimation. Lipinski’s filter was applied to the screened dataset [111]. Partition 

coefficient logP values limit is less than 5 or clogP values limit is less than 6, molecular 

weight limit is less than 500 Dalton, hydrogen bond acceptors limit is less 10, and 

hydrogen bond donors limit is less than 5. Veber’s rule (rotatable bonds must be less than 

10 while value of polar surface area must be less than 120 Å) was also considered 

because molecular flexibility of selected compounds is dependent on the number of 

rotatable bonds, an important property which influences bioavailability of drugs 

[119,142]. Compounds were short-listed based on drug-likeness and were subsequently 

checked for toxicity using four criteria (mutagenicity, tumorigenicity, irritant and 

reproductive effects). 

3.3.2.  Molecular docking and interaction analyses 

 The prerequisite of docking for the PTPN1 data set is the data of the target protein 

structure. The data of the protein (ID: 3EAX) was downloaded from the PDB; its X-ray 

crystallographic structure demonstrated a high resolution of 1.9 Å [143]. The existing 

active site for ligand binding used in the nuclear magnetic resonance (NMR) study of 

3EAX structure was used for the molecular docking study of screened hits. Plant-derived 

compounds from the ZINC database, after passing through drug-like filters, were docked 

into the optimal binding site of the PTPN1 protein using the CLC drug discovery 

workbench tool [55]. A detail investigation of active site of the target protein was 

performed to check if the significant residues which are responsible for activity were 

included in the binding site or not. The compound which holds the selected binding site 
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was specified. After compound selection, docking was performed. The docking results 

summary was displayed in the project with dock scores. A 3D view was selected for 

manual inspection of the structural features of the docked complex involved in binding. 

The docked complex in a mol format file was imported to chimera [144] and was saved 

in PDB format for the binding interaction by Ligplot. The ligand-protein interactions 

were predicted using Ligplot [145]. It generates 2D schematic diagrams of a docked 

complex to explain interactions with hydrophobic moieties and hydrogen bonds having a 

distance within 4 Å.  

3.3.3.  ADME calculation and aggregator advisor prediction 

 In silico ADME (absorption, distribution, metabolism and excretion) calculations 

are steadily gaining interest in computer aided drug discovery [146]. These methods are 

used here to shortlist data with suitable pharmacokinetic (ADME) and toxicity profiles in 

early phase of PTPN1 drug discovery. SwissADME [147] is used to calculate the 

pharmacological profile (drug action/effects within an organism) of selected 15 hits from 

the perspective of drug discovery. This online tool is also used to determine toxic 

structural moieties and synthetic accessibility of selected hits.  

 Aggregator possibility evaluation for selected 15 hits was conducted by 

Aggregator advisor [148]. This online tool compares the chemical similarity of known 

aggregator compounds based on Tanimoto coefficient calculation and physiochemical 

properties. Input was provided using a SMILES file extension to obtain a reliable ADME 

prediction and information on already reported aggregates for each compound. 

3.3.4. Lead identification 
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 After the systematic analyses of all compounds, a lead compound was identified 

as a chemical compound that has the best pharmacological or biological activity against 

the PTPN1 therapeutic target. In detail, the lead compound was identified based on the 

best drug-likeness, pharmacokinetic properties, molecular docking and best binding 

interactions with the significant residues involved in binding the NMR structure of the 

target protein. The aggregator properties were used along with the other parameters to 

shortlist hits as a lead compound.  

 

3.4.  Results and discussion 

To find potential plant-derived PTPN1 inhibitors and to deliver an idea for drug 

design, I have used both ligand and structure based methods. In our study an integrated 

computational approach has been applied for ligand-based pharmacophore modeling of 

reported PTPN1 inhibitors and database screening to retrieve diverse plant-derived 

chemical scaffolds. Molecular docking has been applied in order to clarify the behavior 

of PTPN1 enzyme by the binding of plant-derived compounds with different binding 

affinities. It helps to identify significant residues involve in PTPN1 inhibition. I used 

integrated strategies for structural insights along with medicinal chemistry prospective, 

which will robust bio-assay method to enable the design of potential and selective PTPN1 

inhibitors. The significance of physiochemical properties and ADME/toxicity filters for 

inhibitor design is also emphasized in the search of active plant-derived PTPN1 inhibitors. 

Completely similar reported aggregator compound is a useful reference point in 

designing inhibitor with better physiochemical properties and possibility of inhibition of 

PTPN1 enzyme for in vivo testing with a plant-derived lead compound [133]. 
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 I have discussed in our previous research that most of FDA approved anti-DM 

medicines cannot achieve a satisfactory blood sugar levels in DM person, and have 

numerous adverse effects; therefore, novel anti-DM medicines are desirable. The CADD 

techniques can be exploited to screen efficient hits from various databases and to reduce 

the time and cost to discover novel anti-DM medications [6].  

 The merits of plant-based medicine have been demonstrated for various diseases. 

Metformin is most used medication for T2DM, derivative of guanidine which is obtained 

from Galegine Officinalis [20]. The potential advantages of plant-based medicines over 

synthetic medicines include less side-effects, increased efficacy, increased availability, 

and lower cost. Some of these plant-based medicines are better extracted and used in a 

crude form as is the common practice in traditional anti-diabetic medicine [14]. It is 

mostly used an adjunct to oral antidiabetic therapy to reach appropriate glycemic control. 

 PTPN1 is an acceptable therapeutic target that can be effectively targeted for the 

management of T2DM. Regardless of the accessibility of numerous synthetic PTPN1 

inhibitors, their use often entails side-effects, some of which are life-threatening. 

However, to date, PTPN1 inhibitors are far from achieving regulatory approval from the 

FDA. Therefore, it is necessary to identify novel hits that have potential to evolve into 

effective inhibitors of PTPN1. The present study focuses on a pipeline for the 

development of effective plant-derived anti-DM drugs that are safer and better tolerated 

when compared with synthetic alternatives [133].  

Flavonoids have extensive variety of biological activities, including anti-DM, 

anti-oxidative, anti-inflammatory, anti-allergic, anti-proliferative, anti-viral, anti-cancer 

activities, stomach and liver protection [149]. Initially, I selected 30 compounds reported 
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in the literature in the last decade whose PTPN1 inhibitory activity is less than 10 μM. 

Drug-likeness filters were applied and 11 compounds fulfilled the criteria of drug-

likeness. These are flavonoid compounds with PTPN1 inhibitory activity. Inhibitory 

activities against PTPN1 evaluated using experimental analyses, 2D structures, and 

physiochemical properties confirming drug-like properties, origin and botanical 

information concerning source plant species are listed in Table 3.1. This information is 

useful to understand the importance of these plants for anti-DM medicines.  

 

Table 3.1: Selected compounds that possess protein tyrosine phosphatase non-

receptor type 1 inhibitory activity used as a training set. 

Compound

s 

2D structure 

Potency 

(IC50) 

Physiochemical 

properties 

Source Place of origin Ref. 

F1 

 

4.3 μM 

MW: 424.491 

cLogP: 5.5969 

HBA: 6 

HBD: 3 

PSA: 96.22 

RB: 3 

Broussonetia Papyrifera 

(Extract of roots) 

China
 

[134] 

F2 

 

2.6 μM 

MW: 424.491 

cLogP: 5.5969 

HBA: 6 

HBD: 3 

PSA: 96.22 

RB: 3 

Erythrina addisoniae 

(EtOAc extract of the 

stem bark) 

West tropical 

Africa 

[135] 

OH

OH

O

OHO

HO

HO

O

OOH

OH

O

OH
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F3 

 

4.1 μM 

MW: 422.475 

cLogP: 5.4331 

HBA: 6 

HBD: 3 

PSA: 96.22 

RB: 3 

Erythrina addisoniae 

(EtOAc extract of the 

stem bark) 

West tropical 

Africa 

[135] 

F4 

 

7.6 μM 

MW: 324.375 

cLogP: 4.4262 

HBA: 4 

HBD: 1 

PSA: 47.92 

RB: 0 

Erythrina abyssinica 

(Extract of stem bark) 

Africa (Nigeria) 

 

[136] 

F5 

 

8.8 μM 

MW: 406.476 

cLogP: 5.2725 

HBA: 5 

HBD: 2 

PSA: 68.15 

RB: 2 

Erythrina abyssinica 

(Extract of stem bark) 

Africa (Nigeria) 

 

[136] 

 

F6 

 

6.0 μM 

MW: 350.413 

cLogP: 5.6154 

HBA: 4 

HBD: 2 

PSA: 58.92 

RB: 3 

Erythrina abyssinica 

(Extract of stem bark) 

Africa (Nigeria) 

 

[136] 

O

OOH

OH

OH

O

O

O

H

H

OH

O

O

O

HO

OH

H

O

HH

H

H3C

CH3

H

O

O

H

H

O

OH
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F7 

 

9.7 μM 

MW: 408.492 

cLogP: 5.5966 

HBA: 5 

HBD: 2 

PSA: 68.15 

RB: 2 

Erythrina abyssinica 

(Extract of stem bark) 

Africa (Nigeria) 

 

[137] 

[138] 

 

F8 

 

4.1 μM 

MW: 336.386 

cLogP: 4.9685 

HBA: 4 

HBD: 1 

PSA: 51.83 

RB: 3 

Erythrina abyssinica 

(Extract of stem bark) 

Africa (Nigeria) 

 

[137] 

F9 

 

7.6 μM 

MW: 324.375 

cLogP: 4.9125 

HBA: 4 

HBD: 2 

PSA: 58.92 

RB: 2 

Erythrina abyssinica 

(Extract of stem bark) 

Africa (Nigeria) 

 

[137] 

F10 

 

4.6 μM 

MW: 354.401 

cLogP: 4.6821 

HBA: 5 

HBD: 2 

PSA: 75.99 

RB: 4 

Erythrina addisoniae 

(EtOAc extract of roots) 

West tropical 

Africa, Nigeria, 

Congo. 

[138] 

F11 

 

6.70 μM 

MW: 288.254 

cLogP: 1.81 

HBA: 6 

Abundantly 

present in various fruits 

and vegetables, 

Various regions 

in the world 

[139] 

O

O

H

H

HO

O

HO

OHO

O

OCH3

O

O

H

H

OH

HO

H

H

HH

H

H3C

CH3

H

O

OCH3

O

HO

OH

O

OOH

HO

OH

OH
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HBD: 4 

PSA: 107.22 

RB: 1 

e.g. Salvia tomentosa, 

Aiphanesaculeata. 

 

 To achieve the goal of the ligand-based pharmacophore modeling using 

LigandScout 4.1, eleven compounds were used as input. Possible lowest energy 

conformations for each compound were generated (Table 3.2) and all conformations of 

least flexible compounds were then aligned. For a configurable number of best alignment 

solutions; common pharmacophoric features were interpolated and ten hypothetical 

pharmacophore models were created. The score generated for these models is shown in 

Figure 3.1. The pharmacophore models were ranked by means of several adjustable 

scoring parameters taking into account chemical feature overlap, steric overlap, or both. 

Pharmacophore models are set of common feature pharmacophores created by processing 

all compounds of the dataset. If minimum three common functional features can be 

identified by alignment and interpolation process, common feature pharmacophore 

generation is considered to be successful [63]. 

The model 1 with the highest score is selected for a database search to retrieve 

similar hits from the plant-derived set of the ZINC database. Common features are 

important for the activity of compounds. The pharmacophore generated using 11 

compounds contained four types of pharmacophore features: hydrophobic regions (HRs), 

aromatic rings (ARs), hydrogen bond acceptors (HBAs), hydrogen bond donors (HBDs). 

Table 3.2 shows the total features present in each compound and the number of features 

which are common and the best fit to make the best model. Six features are the best fit to 
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generate the best pharmacophore model. The best pharmacophore model (model 1) in this 

study contains three HBAs, two ARs and one HR, as shown in Figure 3.1. Red spheres 

represent HBAs, purple spheres represent ARs and yellow spheres represent HRs for 

overlay of each compound of dataset upon the pharmacophore generated as shown in 

Table 3.3. 

 

 

 

Figure 3.1: Ten pharmacophore hypothetical models (lower panel) were generated 

for eleven compounds using LigandScout 4.1. Six features are the best fit to generate 

the best pharmacophore model. The proposed pharmacophore model (model 1 

shown in upper panel) used in this study contains three HBAs (red spheres), two 

ARs (purple spheres) and one HR (yellow spheres). 
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Table 3.2: Pharmacophore features of the training set and common pharmacophore 

feature of a selected pharmacophore model. 

Compounds HR AR HBA HBD 

Number of 

confirmations 

Common 

pharmacophoric 

feature 

Pharmacophoric 

fit 

F1 5 2 7 5 54 5 56.30 

F2 5 2 6 3 65 6 64.01 

F3 6 2 6 2 28 6 65.02 

F4 3 2 4 1 4 6 65.37 

F5 6 2 5 2 21 6 65.34 

F6 5 2 4 2 23 6 64.62 

F7 5 2 5 2 49 6 65.34 

F8 4 3 2 1 5 5 48.49 

F9 3 2 4 2 19 6 65.34 

F10 3 2 4 2 106 6 65.07 

F11 1 2 6 4 6 5 56.62 

 

Table 3.3: Overlay of training set compounds upon the pharmacophore generated 

using LigandScout 4.1. 

Sr 

# 
2D Pharmacophore 3D Pharmacophore 

Sr 

# 
2D Pharmacophore 3D Pharmacophore 

F1 

 

 

F7 
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F2 

 

 

F8 

 

 

F3 

 

 

F9 

 
 

F4 

 

 

F10 

 
 

F5 

 

 

F11 

 

 

F6 

 

 

   

 

*Red spheres represent hydrogen bond acceptors, yellow spheres represent hydrophobic regions, and 

purple spheres represent aromatic rings. 

 

 

Significant research has been conducted on achieving PTPN1 inhibition and many 

developed compounds have reached stage I or II clinical trials only to be discarded 

because of bioavailability and toxicity issues. The development of PTPN1 inhibitors is 

challenging because of potency/affinity, selectivity, and cell permeability issues. I 
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applied approximate filters and safety protocols to find a potent lead compound with 

sufficient oral bioavailability, highest docking score with favorable binding interactions, 

acceptable toxicity estimations, favorable pharmacokinetics, aggregation information and 

medicinal chemistry safety parameters [133]. 

.  

 

Figure 3.2: Schematic workflow summarizing the screening of protein tyrosine 

phosphatase non-receptor type 1 inhibitors using computer aided drug design. 
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To identify new plant-derived PTPN1 hits, pharmacophore based screening was 

conducted against 22,723,923 plant-derived compounds from the ZINC database and 

6061 compounds fit with the pharmacophore query. Several filters were selected before 

screening by ZINCpharmer. These criteria dictated that the molecular mass of the 

compound should be less than 500 Daltons, the number of rotatable bonds should not be 

more than 10 [150], the maximum hits per configuration should be one, the maximum 

hits per molecule should be one and the maximum root-mean-square deviation (RMSD) 

for screened hits should be 1.5. The identified pharmacophore fit compounds from the 

databases were required to be drug-like. Therefore, Data Warrior was used for screening 

to calculate the physiochemical properties and toxicity estimation. Lipinski’s and Veber’s 

rules were applied to the screened dataset and reduced it to 4349 compounds. The dataset 

was subjected to a toxicity estimation using four criteria (mutagenicity, tumorigenicity, 

irritant and reproductive effects) and 2636 compounds with no risk of toxicity were 

retrieved. These compounds were used for molecular docking using the CLC drug 

discovery workbench and the 15 top scoring compounds were considered for interaction 

analyses using Ligplot. Then ADME calculations were performed for the selected 15 top 

scored hits to confirm their pharmacokinetic profile and medicinal parameters. Summary 

of drug-likeness and pharmacokinetic properties of the selected 15 selected hits is shown 

in Table 3.4. Many of the selected hits were shown to interact with the cytochrome P450 

isoforms. Tyr46, Asp48, Ser216, Ala217 and Arg221 residues of target proteins are 

mostly involved in the binding of 15 hits as shown in Table 3.5. Summary of ligand-

protein binding analyses of selected 15 hits is shown in Table 3.6. Synthetic accessibility 

score (SAS) based on the fragmental analyses of the structures of virtual hits is 
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acceptable for easy synthesis in laboratories. The 11 hits demonstrated no drug safety 

alerts. The aggregator potential through comparison with previously reported aggregators 

is shown only for the four hits demonstrated in Table 3.7. A lead compound was 

identified after a series of filters based on a CADD scheme (Figure 3.2).  

 Table 3.4: Summary of drug-likeness and pharmacokinetic properties of the 15 

selected virtual hits.  

Virtual 

hits 

Oral bioavailability 
Pharmacokinetic 

properties 

Log Kp 

(skin 

permeation) 

Water 

solubility 

Toxicity 

estimation 

MW cLogP HBA HBD RB PSA 
B-

Score 

ZINC06
137783 

450.581 3.2659 7 2 5 73.91 0.55 

GI absorption 

BBB permeant 

P-gp substrate 
CYP2C9 inhibitor 

CYP2D6 inhibitor 

CYP3A4 inhibitor 

−6.19 
Moderately 
soluble 

 

No risk 
 

 

ZINC04
259062 

464.545 2.8826 8 2 4 119.22 0.55 

GI absorption 

P-gp substrate 

CYP1A2 inhibitor 
CYP2C9 inhibitor 

CYP2D6 inhibitor 

CYP3A4 inhibitor 

−7.34 
Moderately 
soluble 

No risk 

ZINC03

841413 
460.553 2.4036 9 2 5 116.43 0.55 

GI absorption 
P-gp substrate 

CYP3A4 inhibitor 

−8.02 Soluble No risk 

ZINC04
277683 

458.516 3.016 8 2 4 90.98 0.55 

GI absorption 
P-gp substrate 

CYP2C9 inhibitor 

CYP2D6 inhibitor 
CYP3A4 inhibitor 

−7.31 
Moderately 
soluble 

No risk 

ZINC04

259056 
476.507 3.1168 8 2 4 90.98 0.55 

GI absorption 

P-gp substrate 
CYP1A2 inhibitor 

CYP2C9 inhibitor 

CYP2D6 inhibitor 
CYP3A4 inhibitor 

−7.35 
Moderately 

soluble 
No risk 

ZINC04

259064 
458.497 2.0691 9 2 4 103.87 0.55 

GI absorption 

P-gp substrate 

CYP2C9 inhibitor 
CYP2D6 inhibitor 

CYP3A4 inhibitor 

−7.84 Soluble No risk 

ZINC05

535232 
415.448 3.7749 7 2 1 89.95 0.55 

GI absorption 
CYP2C19 inhibitor 

CYP2C9 inhibitor 

CYP3A4 inhibitor 

−6.90 
Moderately 

soluble 
No risk 

ZINC04
237088 

445.521 4.4229 5 0 2 64.41 0.55 

GI absorption 
BBB permeant 

CYP2C19 inhibitor 

CYP2C9 inhibitor 
CYP3A4 inhibitor 

−5.91 
Moderately 
soluble 

No risk 

ZINC13

733603 
421.448 3.5857 7 0 5 74.3 0.55 

GI absorption 

CYP1A2 inhibitor 
CYP2C19 inhibitor 

−5.97 
Moderately 

soluble 
No risk 
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* The toxicity estimation used four major criteria (mutagenicity, tumorigenicity, reproductive effects and 

irritant effects). 

 

The selected hits showed acceptable bioavailability and pharmacokinetic profile. 

These virtual hits follow the rule of five and Veber’s rule of drug-likeness. A toxicity 

estimation based on four criteria was also acceptable for the 15 hits. There was no 

predicted mutagenic, tumorigenic, irritant and reproductive risk to a patient. The Log Kp 

(skin permeation) values were in an acceptable range, demonstrating that the cell 

permeability power of the selected candidates is sufficient. Water solubility was assessed 

because a weakly soluble chemical candidate restricts the in-vivo bioactivity because of 

less dissolution in the intestinal solutions subsequently involves in its oral administration 

[151]. The predicted solubility values for the selected hits were within a suitable range. In 

silico pharmacokinetic principles (rules that explain how a body affects/deals a drug with 

absorption, distribution, metabolism, and elimination) are used to assess if a drug-like 

compound is likely to be safe and effective for therapeutic management in patients. In 

CYP2C9 inhibitor 

CYP2D6 inhibitor 
CYP3A4 inhibitor 

ZINC41
585804 

472.539 3.3751 7 1 6 71.47 0.55 

GI absorption 

BBB permeant 

P-gp substrate 
CYP2C19 inhibitor 

CYP2C9 inhibitor 

CYP2D6 inhibitor 

−6.20 
Moderately 
soluble 

No risk 

ZINC00
004749 

316.308 2.4978 6 4 1 107.22 0.55 

GI absorption 

BBB permeant 

P-gp substrate 
CYP2C19 inhibitor 

CYP2C9 inhibitor 

CYP2D6 inhibitor 

−6.20 
Moderately 
soluble 

No risk 

ZINC02

093367 
424.451 4.2868 5 0 4 61.83 0.55 

GI absorption 
CYP2C19 inhibitor 

CYP2C9 inhibitor 

CYP3A4 inhibitor 

−5.40 
Moderately 

soluble 
No risk 

ZINC30

731533 
482.44 2.1266 10 5 4 155.14 0.55 

GI absorption 

CYP3A4 inhibitor 
−7.89 

Moderately 

soluble 
No risk 

ZINC00

968072 
274.271 2.3608 5 4 1 90.15 0.55 

GI absorption 

P-gp substrate 
−7.02 Soluble No risk 

ZINC13

722309 
485.512 2.4048 9 0 5 116.82 0.55 

GI absorption 

CYP2C19 inhibitor 

CYP2C9 inhibitor 
CYP3A4 inhibitor 

−7.30 
Moderately 

soluble 
No risk 
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addition, an estimation of cytochrome P450 (e.g. cytochrome p4501A2, cytochrome 

p4502C19 and cytochrome p4502C9) was performed for its most critical isoforms by 

SwissADME predictor shown in Table 3.4. The cytochrome P450 is a superfamily which 

performs important functions such as absorption, metabolism, and elimination of a drug 

from liver [152]. If a drug does not metabolize and accumulate for long time in the body 

will cause toxicity. Many hits were shown to interact with the cytochrome P450 isoforms. 

In silico estimation for gastrointestinal (GI) drug absorption is acceptable, all selected 

hits shown positive response towards oral administration.  

The molecular docking was conducted to estimate the most favorable geometry of 

the ligand bound to a PTPN1 macromolecule. I considered 2636 compounds for the 

molecular docking study. PTPN1 was used as a molecular target (PDB ID: 3EAX) [137]. 

  

Figure 3.3: Hydrophobic surface and the active binding site of the 3EAX protein 

showing LZP ligand that is co-crystallized and overlaid at the active site, as 

generated using chimera. 
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 I used the CLC drug discovery workbench for analyses of molecular binding of 

our screened dataset within the protein binding site. A comprehensive study of active site 

of PTPN1 X-rays crystal structure was conducted. I found that most of the protein 

binding site is hydrophobic. Figure 3.3 shows the molecular surface recognition of 3EAX 

generated by using chimera software. Figure 3.4 shows results of a detailed 2D 

interactions analysis of the target protein complex and three potential hits. Figure 3.4 (A) 

shows that Tyr46, Asp48, Val49, Ser216, Ala217, Gly220, Arg221, Gln262, and Gln266 

are interacting residues within 4 Å of the protein binding site of 3EAX. Molecular 

docking simulations identified hydrogen and hydrophobic bindings with significant 

residues of PTPN1 target protein as shown in Table 3.5. 
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Figure 3.4: Schematic representation of the binding mode of ligands with protein 

tyrosine phosphatase non-receptor type 1 inhibitors (PDB ID: 3EAX). The protein 

site is hydrophobic and the NMR structure of the 3EAX protein complex bonded 

with LZP is shown in (A). Conserved interacting residues of the binding site of the 
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target protein bonded with the virtual hits (B). ZINC04259056 shows only 

hydrophobic bonding (C). ZINC30731533 shows large network of hydrophobic and 

hydrogen bonding (D). ZINC00968072 also shows large network of hydrophobic 

and hydrogen bonding. Conserved interacting residues are displayed in red circles. 

 

Table 3.5: Conserved interacting residues within the binding site of the target 

protein of the top scored 15 virtual hits. 

Virtual hits Tyr46 Asp48 Val49 Ser216 Ala217 Gly220 Arg221 Gln262 Gln266 

ZINC06137783 + + − + + + + − + 

ZINC04259062 + + − + + + + + − 

ZINC03841413 + − − + + + + + + 

ZINC04277683 + + − + + + + − + 

ZINC04259056 + + − + + + + + + 

ZINC04259064 + + − + + + + + − 

ZINC05535232 + + + + + + + − − 

ZINC04237088 − − − + + − + + + 

ZINC13733603 + + − + + + + − − 

ZINC41585804 − + − + + + + + + 

ZINC00004749 + + − + − − + + + 

ZINC02093367 + + − − + + + + − 

ZINC30731533 + + − + + − + − − 

ZINC00968072 + + + − + + + + + 

ZINC13722309 + + − + + − + + − 

* If key residues are present in the binding interaction within 4Å of the binding site of the target protein, 

then this is represented by “+”. If the residues are not present this is represented by “−”. 
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Table 3.6: Summary of molecular docking analyses of selected 15 virtual hits  

Virtual hits RMSD Score 

Ligand 

conformation 

penalty 

Interacting residues in the 

active binding site 

No. of hydrogen 

bonds 

No. of 

hydrophobic 

bonds 

Total number 

of bonds 

ZINC06137783 0.95 −55.125 1.76 

Tyr46, Asp48, Phe182, 

Gly183,Cys215, Ser216, 

Ala217, Ile219,Gly220, 

Arg221, Gln266. 

0 29 29 

ZINC04259062 0.95 −55.133 4.07 

Asp48, Lys116, Ala217, 

Ser216,Ile219, Gly220, 

Arg221, Gln262. 

0 28 28 

ZINC03841413 0.95 −53.418 2.25 

Tyr48, Phe182, Gly183, 

Asp184,Cys215, Ser216, 

Ala217, Ile219, 

Gly220,Arg221,Gln262, 

Gln266. 

0 29 29 

ZINC04277683 0.95 −52.773 4.26 

Tyr46, Asp48, Lys116, 

Phe182,Gly183, Cys215, 

Ser216,Ile219,Ala217,Gly22

0,Arg221, Gln266. 

0 29 29 

ZINC04259056 0.95 −52.545 4.26 

Tyr46, Asp48, Lys116, 

Phe182,Ser216, Ala217, 

Ile219, Gly220, 

Arg221, Gln262, Gln266. 

0 28 28 

ZINC04259064 0.95 −51.956 4.70 

Tyr46, Asp48, Lys116, 

Phe182,Ser216, Ala217, 

Ile219, Gly220, Arg221, 

Gln262. 

1 

[Lys116: (2.88Å)] 

29 30 

ZINC05535232 1.03 −51.241 0.35 

Tyr46, Asp48, Val49, 

Lys116,Lys120, 

Cys215,Ser216, Ala217, 

Gly220, Arg221. 

2 

[Lys116: (3.00Å)] 

[Ser216: (3.24Å)] 

33 35 

ZINC04237088 1.11 −51.215 6.53 Phe182, Gly183,Cys215, 0 29 29 
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Ser216, Ala217, Ile219, 

Gly220, Arg221, Gln262, 

Thr263, Gln266. 

ZINC13733603 0.68 −51.169 3.00 

Phe182, Gly183, Cys215, 

Ser216,Ala217, Ile219, 

Gly220, Arg221,Gln262, 

Thr263, Glu266. 

0 29 29 

ZINC41585804 0.57 −50.542 5.69 

Tyr46, Asp48, Phe182, 

Gly183,Ser216,  

Ala217,Gly220, Arg221, 

Gln262, Thr263, Gln266. 

3 

[Gln266: (3.01Å)] 

[Arg221: (3.12Å)] 

[Tyr46: (2.82Å)] 

28 31 

ZINC00004749 0.84 −50.387 0.36 

Asp48, Tyr46, Trp179, 

Ser216,Arg221,Gln262,Thr2

63, Gln266. 

4 

[Asp48: (2.63Å)] 

[Ser216: (2.99Å)] 

[Arg221: (2.73Å)] 

[Arg221: (2.64Å)] 

21 25 

ZINC02093367 0.94 −50.372 3.44 

Tyr46, Asp48, Cys215, 

Ala217,Ile219, Gln262, 

Arg221, Gly220. 

3 

[Arg47: (2.80Å)] 

[Arg47: (3.01Å)] 

[Arg47: (2.89Å)] 

20 23 

ZINC30731533 0.79 −50.331 2.61 

Tyr46, Arg47, Asp48, 

Glu115,Lys120, 

Asp181,Ser216, Ala217, 

Arg221. 

7 

[Asp48: (3.26Å)] 

[Arg47: (2.63Å)] 

[Arg47: (3.17Å)] 

[Asp181: (3.01Å)] 

[Ala217: (3.18Å)] 

[Glu115: (3.29Å)] 

[Arg221: (2.59Å)] 

30 37 

ZINC00968072 0.82 −50.315 0.36 

Tyr46,Val49,Asp48,Cys215, 

Ala217,Arg221,Gly220, 

Gln266. 

5 

[Gln266: (2.73Å)] 

[Arg221: (3.17Å)] 

[Arg221: (2.91Å)] 

[Cys215: (2.59Å)] 

[Asp48: (2.60Å)] 

20 25 
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ZINC13722309 0.54 −50.239 3.01 

Tyr46, Arg47, Asp48, 

Gln262, Ala217, Ile219, 

Cys215. 

3 

[Arg221: (3.12Å)] 

[Ser216: (3.23Å)] 

[Ser216: (3.10Å)] 

37 40 

 

 On the basis of the best docking score, 15 hits were selected to identify a potent 

lead compound. The interactions of the active conformation of the best scoring 15 hits 

with the target protein were identified using Ligplot. The saved conformation for the 

docked complex was subjected to detailed interactions analyses. The docked files were 

uploaded to Ligplot to obtain its schematic representation of the hydrogen bonding and 

hydrophobic interactions. Detailed interactions of all docked complexes are shown in 

Table 3.6. These hits resulted from the hydrogen bonds and the hydrophobic moiety 

interacting with the significant residues in the range of 4 Å, and the calculated hydrogen 

bonds distances have been demonstrated. 

 The optimal binding mode of the three hits ZINC04259056, ZINC30731533 and 

ZINC00968072 having dock scores of −52.545, −50.331 and −50.315, is shown in Figure 

3.4 (B, C, D), respectively. The 2D analyses of these docked complexes revealed the 

significant residues involved in the binding interactions of the selected hits. Common 

binding residues are marked with red circles to highlight them (Figure 3.4). The diagram 

provides a schematic representation of the docked complex. There are many hydrophobic 

interactions and so only residues are shown for clarity. Nine residues for the binding of 

the NMR protein (3EAX) to its ligand (LZP) are shown in Figure 3.4 (A). While (B) 

ZINC04259056 and (D) ZINC00968072 show that eight interacting residues are common 
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and (C) ZINC30731533 shows that five interacting residues are common to the 3EAX 

docked complex. Red circles are demonstrating similar binding residues (Figure 3.4). 

 Seven compounds show prominent hydrophobic binding interactions and eight 

compounds also show hydrogen bonds. Hydrogens bonds are also of great importance in 

PTPN1 inhibitor design. In general, for most effective inhibition; inhibitory compounds 

should interact with the most possible surface residues of protein binding pocket. 

Therefore, the inhibitory compounds must have polar amino acid and be charged 

anionically at functional pH [153]. In addition, the inhibitory compound must be firmly 

anchored by the establishment of hydrogen bonds with particular amino acid residues and 

inhibitory functional groups in the protein binding pocket [153,154]. However, 

interactions with polar amino acids will reduce the ability of PTPN1 inhibitors to cross 

cell membrane and to access the cytosolic PTPN1 [153]. Hydrogen and hydrophobic 

interaction together contribute in PTPN1 inhibition. It contributes in strong bonding of 

selected hits with the active binding site of respective protein. ZINC13722309 shows 40 

binding interactions with the target protein, while ZINC30731533 shows 37 binding 

interactions and ZINC05535232 shows 35 binding interactions. ZINC30731533 shows 

the best binding mode with the hydrophobic moiety and the polar surface residues of the 

protein pocket. The dock scores of the top 15 hits are ≥ −50. The RMSD values are in the 

range of 0.5 to 1.1, which are considered to be acceptable values. The ligand 

conformation penalty is the conformational restriction energies that involve binding of 

flexible ligands in the protein pocket.  
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 Aggregator advisor was used for 15 selected hits to check their aggregator 

possibility (Table 3.7). While using this online tool default affinity range (0.1 to 10 μM) 

was selected. On the basis of lipophilicity, LogP and chemical similarity thresholds 

(Tanimoto coefficient), three hits (ZINC03841413, ZINC04259064 and ZINC00968072) 

were not previously reported as aggregator and have not shown any similarity with 

known aggregator in the database. However, some hits were not similar to any known 

aggregators in the database and would require appropriate controls for possible 

aggregation if analyzed in vitro. Four hits (ZINC41585804, ZINC00004749, 

ZINC02093367, and ZINC30731533) with similarly threshold, LogP, and chemical 

structure of known aggregators are shown in Table 3.7 [155]. 

Table 3.7: Summary of aggregator advisor results and medicinal alerts for selected 

15 virtual hits. 

Virtual hits 

Aggregator likelihood Medicinal chemistry 

LopP TC 
Structure of similar 

compound 
Comments SAS PAINS Brenk 

ZINC06137783 4.4 - - 

Not similar to any 

known aggregator in 

in-house database. 

5.13 No alerts No alerts 

ZINC04259062 3.0 - - 

Not similar to any 

known aggregator in 

in-house database. 

4.82 No alerts No alerts 

ZINC03841413 2.3 - - 

Has not been 

previously reported 

as an aggregator, or 

to be similar to an 

aggregator. 

5.00 No alerts No alerts 

ZINC04277683 3.1 - - 

Not similar to any 

known aggregator in 

in-house database. 

4.80 No alerts No alerts 
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ZINC04259056 3.3 - - 

Not similar to any 

known aggregator in 

in-house database. 

4.82 No alerts No alerts 

ZINC04259064 1.9 - - 

Has not been 

previously reported 

as an aggregator, or 

to be similar to an 

aggregator. 

4.83 No alerts No alerts 

ZINC05535232 3.5 - - 

Not similar to any 

known aggregator in 

in-house database. 

4.51 No alerts No alerts 

ZINC04237088 4.1 - - 

Not similar to any 

known aggregator in 

in-house database. 

4.68 No alerts No alerts 

ZINC13733603 4.7 - - 

Not similar to any 

known aggregator in 

in-house database. 

4.28 No alerts No alerts 

ZINC41585804 4.9 

 

72% 

 N N

HO

O

O  

Reported as a 

colloidal aggregator. 
3.82 

Undesirab

le alerts 
No alerts 

ZINC00004749 2.4 78% OHO

OH O

OH

O

O

OH

O

OH

 

Reported as a 

colloidal aggregator. 
3.82 

Undesirab

le alerts 
No alerts 

ZINC02093367 6.0 71% 
O

O

O

 

Reported as a 

colloidal aggregator. 
3.94 No alerts 

Undesira

ble alerts 

ZINC30731533 1.5 100% OHO

OH O

OH

O

O

OH

O

OH

 

Reported as a 

colloidal aggregator. 
4.92 No alerts No alerts 
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ZINC00968072 2.5 - - 

Has not been 

previously reported 

as an aggregator, or 

to be similar to an 

aggregator. 

3.07 
Undesirab

le alerts 

Undesira

ble alerts 

ZINC13722309 3.0 - - 

Not similar to any 

known aggregator in 

in-house database. 

4.87 No alerts No alerts 

 

Selected 15 hits were also checked from a medicinal chemistry perspective, in 

terms of the presence of any toxic moieties, PAINS also known as pan assay interference 

compounds and Brenk filters, to determine an oral bioavailability and drug safety profile 

[147]. ZINC41585804, ZINC00004749, ZINC02093367, and ZINC00968072 showed 

high-risk structural alerts. Consequently, these four compounds should be discarded 

during the initial phase of drug development to avoid possible toxic effects. The 

remaining 11 compounds demonstrated no drug safety alerts and potential starting points 

for further studies. While ZINC30731533 shows the complete similarity (100%) to 

compound that has been reported as aggregator (Table 3.7). The aggregator likelihood 

assessment suggested a reference point for identified lead compound suitable for future 

study.  

Eleven compounds with acceptable physiochemical properties and without any 

expected toxicity or medicinal chemistry alerts were identified. The ZINC30731533 hit 

showed the best results in all the in silico protocols applied in the current study. It 

showed binding interactions, with a large network of hydrophobic interactions along with 

seven hydrogen bonds with the most important polar residues of the 3EAX NMR target 

protein structure. This compound did not show any toxicity risks like mutagenicity, 
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tumorigenicity, reproductive effects and irritant effects. The pharmacokinetic calculations 

were also favorable. The aggregator likelihood with previous reported active compound 

was 100%, and it suggested ZINC30731533 is a potent lead compound through 

computational methods.  

 ZINC30731533 is known as isosilybin (major active constituent of silymarin); an 

abundant flavonolignans identified in milk thistle. Silymarin is famous as Chinese 

traditional medicine for overindulgence of food or indigestion treatments. When an 

adjunct to oral diabetes therapy is used; it showed that level of fasting blood glucose 

reduces and maintain HbA1c in animal models and in diabetic patients. It seems to 

increase insulin sensitivity. But more research is required to confirm its efficacy in 

management of diabetes mellitus [156]. Hence ZINC30731533 is suitable for in vivo 

studies to validate its PTPN1 inhibitory activity, with the potential for development of an 

antidiabetic drug. 

In this study I focused on identifying new candidates as anti-DM agents. By using 

structural information of already modeled PTPN1 structure (PDB id: 3EAX), detail 

binding behavior of PTPN1 is studied. Computational techniques were systematically 

used in this study to produce the results. It is worthy to note that I identified a lead 

compound (isosilybin; an active constituent of silymarin) as a PTPN1 inhibitor. Our 

recommendation is to test isosilybin in laboratories to confirm its activity as PTPN1 

inhibitor [133]. I highlighted the importance of PTPN1 enzyme in this study which is 

involved in many biological processes, however, design and development of PTPN1 

inhibitor is a hot research topic for treatment of obesity and cancer, as well as for T2DM 

[143]. The proposed virtual lead, isosilybin, is a flavonoid compound which shows 
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extensive variety of biological activities because flavonoids are beneficial for treatment 

of various diseases [149]. Furthermore, DM is a complicated disease, and DM patients 

usually have other complications along with the disease. In this regard, the proposed lead 

compound is expected to show multiple treatments for diabetic patients who have other 

complications.  

 

3.5.  Conclusion 

 By using computer-aided drug design methodologies successfully identified plant-

derived therapeutic hits with the potential to inhibit the PTPN1 target, which may be 

helpful to enhance insulin production. The newly identified lead isosilybin 

(ZINC30731533) in this systematic study was without any predicted toxic effects and 

showed the best binding mode with the PTPN1 therapeutic target. Therefore, the lead 

compound is expected to function as an anti-diabetic drug after subsequent testing and 

validation. The present study could aid in the development of PTPN1 inhibitors for 

diabetes treatment. 
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CHAPTER 4 

CONCLUSION AND FUTURE PROSPECTS 

 

This dissertation aims to identify novel candidates as anti-DM agents. Drug 

discovery of antidiabetic drugs was delayed in previous 30 years, but now, as a result of 

detail understanding of molecular targets, scientific knowledge, advance technology, 

progress in drug design methods shows remarkable improvements.  

Computer-aided molecular docking methods were applied to human insulin 

protein [116] and plant insulin present in Canavalia ensiformis to identify anti-diabetic 

compounds (chapter 2). Safe and effective use of natural products can ensure that plant-

based medicines are more harmonious with biological systems. The use of some plants 

extracts, alone or in combinations with conventional diabetic medications proves as 

beneficial [88-90] but due to complication in the structure of phytochemicals and its 

bioactivities, mechanism is not clearly understood; plant extracts can show numerous 

favorable activities in several metabolic pathways. The present study confirms plant 

proteins genomic sequences are similar to those of animal insulin (table 2.1 and table 2.2) 

and evaluate its action with diabetic medicine. It could be therapeutically significant for 

diabetic patients. I selected a lead compound, which is an anti-diabetic synthetic 

compound with publication number: WO2007067614 shown as T6 in table 2.3 from the 

dataset of eight compounds that had desired biologic activities on a validated molecular 

target. Lead compound was screened as a novel plant insulin-based compound (through 

molecular docking analysis) and its four analogs were confirmed as antidiabetic agents 

with appropriate drug-like properties compared to the standard compound (aleglitazar). 
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Computer-aided approach provided information on binding energies and binding 

interactions of the analogs to predict their anti-DM activities. These analogs need to 

synthesize in lab and test for their pharmacokinetic and pharmacodynamics effects. 

PTPN1 inhibition can deceases adipose tissue storage of triglyceride lower than 

the conditions of over-nutrition and was not related with any severe toxicity. No weight 

increase, indicating additional substantial benefit for anti-DM patients, who are often 

obese along with cardiovascular risk. I have well established computer-aided pipeline to 

highlight new PTPN1 inhibitors (chapters 3). Computer-based screening is applied to 

identify the most promising anti-DM agents from the plant-derived set of ZINC databases 

[133]. Screening was on the basis of the pharmacophoric features (model 1 shown in 

figure 3.1) of reported PTPN1 inhibitors and binding mode of PTPN1 protein structure 

(3EAX). Through the screening pipeline isosilybin (ZINC30731533) was screened as a 

PTPN1 inhibitor. Isosilybin was confirmed by oral bioavailability (Lipinski rule and 

veber's rule) and pharmacological activity (ADME and toxicity estimations). Isosilybin is 

a major active constituent of Silymarin. Silymarin demonstrated increase in insulin 

sensitivity in diabetic patients, but the exact mechanism of action was not clearly 

understood. My computer-aided approach confirmed that the isosilybin (ZINC30731533) 

acts as a potential PTPN1 inhibitor and mechanism of PTPN1 inhibition is clearly 

understood for diabetes mellitus [157]. It might lead in future development of potential 

PTPN1 inhibitor.  

Computational methods are used to identify mode of interaction of therapeutic 

target and previously unknown bio-activities for known plant-derived data. Subsequently, 

it will add information to progress companies made functional food ingredients and 
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dietary supplements. At this stage, it is significant to highlight that while finding 

bioactive insulin-like proteins or anti-DM compounds; identification of the plant-derived 

proteins/compounds is likely important it will add information to chemical synthesis of 

novel and unique natural products which could be valuable functional food, dietary 

supplements or an anti-DM medicine.  

In future, the results could be useful as substructures for molecular dynamic 

simulations and wet lab experimental studies which will not only proceed to the new 

vision of drug design and discovery and may offer an effective therapy for diabetes 

mellitus. 

I have succeeded in screening novel drug candidates as anti-DM agents along 

with knowledge of plant extracts which possess anti-DM activity by computer-aided drug 

design methods. My perspective of the methods is to prevent huge cost and hectic work 

of wet lab experiment-based drug discovery. I have developed computer-aided screening 

pipelines based on open source software, off-the-shell software, and desktop personal 

computer.  I generated and confirmed an inexpensive scheme available to the academic 

institutes and developing countries. 
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