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Electroencephalogram (EEG) measurement, being an appropriate approach to 

understanding the underlying mechanisms of the major depressive disorder (MDD), is 

used to discriminate between depressive and normal control. With the advancement of 

deep learning methods, many studies have designed deep learning models to improve the 

classification accuracy of depression discrimination. However, few of them have focused 

on designing a convolutional filter to learn features according to EEG activity 

characteristics. In this study, a novel convolutional neural network named 

HybridEEGNet that is composed of two parallel lines is proposed to learn the 

synchronous and regional EEG features, and further differentiate normal controls from 

medicated and unmedicated MDD patients. A ten-fold cross validation method is used to 

train and test the model. The results show that HybridEEGNet achieves a sensitivity of 

68.78%, a specificity of 84.45%, and an accuracy of 79.08% in three-category 

classification.  
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1 Introduction 

Major depressive disorder (MDD, also known as 

unipolar depression) is widely distributed in 

populations worldwide and is one of the leading causes 

of disability in both adolescents and adults. According 

to the World Health Organization's statistics, over 300 

million individuals suffer from depression worldwide, 

and approximately 800,000 people die due to it every 

year [1-4]. An accurate diagnosis of depression in an 

early stage is critical and beneficial for depressed 

people who need to receive clinical treatment in time.  

Based on the various physiological measurement 

tools, such as functional magnetic resonance imaging 

(fMRI), electroencephalogram (EEG) and positron 

emission tomography (PET), many studies have tried to 

measure the psychological data and develop an 

adjunctive diagnostic approach in clinical practice [5-9]. 

One of the measurement tools, namely, quantitative 

measurement of a brain's electrical signals taken from 

the EEG, is a neuroimaging technique with clear 

practical advantages because it does not involve 

invasive procedures, is easy to administer, is tolerated



 

well, and has a relatively low cost. Furthermore, the 

pervasive and persistent nature of depressive 

symptoms has made scalp-recorded EEG an 

appropriate approach to understanding the underlying 

mechanisms of the major depressive disorder. To this 

end, many studies proposed various EEG data-based 

methods for depression discrimination in recent years 

[7-12]. For instance, their findings showed that 

low-frequency bands, such as alpha and beta, are 

promising candidate biomarkers. This suggested that 

the resting-state EEG might conceal a biomarker for 

pathophysiology in neurodevelopmental disorders.  

Recent advances in EEG acquisition and 

processing for discriminating depression have been 

paralleled by the increased availability of machine 

learning methods [13-16]. Despite their promise as a 

supplementary computer-aided diagnostic approach to 

studying depression, these analytic methods are 

semiautomatic because their methods require manual 

feature extraction and selection that are 

time-consuming and labor-intensive. Few studies used 

the raw EEG data as the model input directly for 

classifying depressive patients and healthy controls. In 

other words, a classification method that can directly 

learn from raw EEG data and automatically extract 

EEG features is more suitable for constructing an 

automated EEG analysis method for depression 

discrimination. Deep learning is such kind of machine 

learning method that is commonly used in many EEG 

data-based classification scenarios. As one of the deep 

learning methods, the convolutional neural network 

(CNN) is able to directly learn EEG features from raw 

data, and does not require a handcrafted set of features 

for classification [17-25]. For example, Acharya and 

colleagues presented the first application of CNN-based 

depression discrimination [24]. A novel CNN model 

named DeepConvNet was proposed to decode imagined 

or executed movements from raw EEG [18]. EEGNet 

introduced a compact convolutional neural network for 

EEG-based brain-computer interfaces (BCIs) used 

depthwise and separable convolutions to construct an 

EEG-specific model [25].  

Although many studies have used CNNs to 

perform EEG-based classification tasks including 

depression discrimination, few of them designed a 

convolutional filter to learn EEG features according to 

the EEG activity pattern [23-25]. All of the existing 

methods mix EEG data of multiple channels into a row, 

which results in the following layers being unable to 

learn the spatial distribution characteristics of 

multichannel EEG data, and a partial loss of the 

synchronous characteristics of multiple brain regions.  

As EEG activity characteristics always reflect the 

summation of the synchronous activity pattern over a 

network including several brain regions with similar 

spatial orientations, those methods might not fully use 

synchronous EEG characteristics to design the model 

and perform the classification task. Considering that 

EEG network irregularity is one of physiological 

symptoms that could be caused by depression, we have 

reasons to believe that the summation of the 

synchronous activity characteristic over a network 

might contain useful depression-specific information. 

In addition, since EEG activity possesses regional 

characteristics originating from different brain regions, 

regional EEG characteristics extracted from different 

EEG channels could also be used for depression 

discrimination. In other words, the synchronous and 

regional characteristics tend to reflect different aspects 

of depression-specific information. It is expected that 

richer and more accurate depression discrimination 

maybe achieved by fusing the two kinds of 

characteristics that synthesize the hybrid information. 

The above observations motivate us to design different 



 

convolutional filters to learn the EEG's synchronous 

and regional characteristics and construct a CNN 

model to distinguish depression.  

In this study, we propose a novel CNN model 

named HybridEEGNet to capture more 

depression-specific information. Specially, there are 

two kinds of convolutional filters in HybridEEGNet, 

which are used to simultaneously learn the 

synchronous EEG characteristic and the regional EEG 

characteristic. We also evaluate the proposed 

HybridEEGNet model with a three-category 

classification task of making a distinction among 

medicated depressive patients, unmedicated depressive 

patients and normal controls. The results demonstrate 

that our method constantly outperforms other 

state-of-the-art approaches for the task.  

 

2 Methods 

2・1 Input Data Representation 

Inspired by successful architectures in computer 

vision, the input data of the first layer is represented as 

a 2D matrix. Every EEG record is a data matrix of size 

C * D, where C denotes the number of channels, and D 

represents the length of a record. Then, all records are 

split up into a sequence of fragments X1, X2, ..., XT. 

The size of each fragment Xt is C * d, where d is the 

ratio of D/(number of fragments). Each fragment Xt 

also has a corresponding category label Lt, and 

fragments belonging to the same record have the same 

category label. The one-hot coding strategy for 

three-category classification is used to represent Lt. 

Using the above notation, the inputs of the proposed 

CNN model are a set of time-ordered sequences X1, 

X2, ..., XT with a set of corresponding labels L1, L2, ..., 

LT. 

2・2 HybridEEGNet Model Construction 

Figure 1 shows the architecture of the 

HybridEEGNet model, in which two parallel lines are 

designed to run two independent TensorFlow graphs. 

Specifically, the HybridEEGNet model consists of two 

independent CNN submodels. Every independent CNN 

model comprises 8 convolutional layers and 8 

max-pooling layers. Four fully connected layers and one 

softmax layer are shared by the two submodels. We 

refer to the submodel learning the EEG's synchronous 

characteristic as the SynEEGNet part, and the 

submodel learning the EEG's regional characteristic as 

the RegEEGNet part. Table 1 illustrates the 

parameters of the HybridEEGNet model. Columns 

under Layer Size provide information on input and 

output sizes of each layer, and the input or output of a 

layer contains the number of neurons equal to channels 

* data points * feature maps. For each layer of the 

SynEEGNet part, the input and output sizes are as 

same as those of the corresponding layer in the 

RegEEGNet part. To avoid a repetitive representation, 

we use one column Input Size or Output Size to 

describe the input size or the output size of the layer in 

different parts.  

For each feature map, we define the direction 

along the data points as the y-axis, and the direction 

along the channels as the x-axis. Filter Size means the 

size of the convolutional filter or the max-pooling filter. 

Syn represents the convolutional filter used for 

learning the synchronous EEG characteristic, and Reg 

represents the convolutional filter used for learning the 

regional EEG characteristic. $Stride$ indicates how 

the filter shifts along the x-axis and the y-axis. The 

input data of the first layer is represented as a 2D 

matrix that comprises C channels; each channel 

contains D data points. The convolutional filters shift 

along the x-axis and the y-axis by one unit each time. 

The zero-padding method is utilized to pad the input of 

convolutional layer if the filter does not fit the input. 



 

The max-pooling filters shift along the x-axis and the 

y-axis by one unit each time and by two units each time, 

respectively. The specific operations are illustrated as 

follows:  

Convolutional layers. Two kinds of convolutional 

filters are designed to learn separately the EEG's 

synchronous and regional characteristics. The former 

could be regarded as the EEG characteristic of multiple 

channels, and the convolution operation is split into the 

first convolution across the data of multiple channels 

and the second convolution across time. The regional 

EEG characteristic could be regarded as the EEG 

characteristic of a single channel, and the convolution 

operation is split into the first convolution across the 

data of a single channel and the second convolution 

across time. To facilitate the following description, we 

use uppercase and lowercase letters to distinguish the 

layer operations in the two submodels. If l = 0, layer l is 

the input layer with the input being EEG fragment Xm. 

Let layer l (l ≥ 1) be a convolutional layer. Then, the 

input of layer l comprises ml-1 feature maps from the 

previous layer. The output of layer l consists of ml 

feature maps. The ith feature map in layer l of two 

submodels, denoted 𝑌𝑖
𝑙  and 𝑦𝑖

𝑙 , are computed as 

follows: 

Yi
l = f (Bi

(l)
+ ∑ Ki,j

(l)
∗

m1
(l−1)

j=1

Yi
(l−1)

) (l ≥ 1) 

yi
l = f (bi

(l)
+ ∑ ki,j

(l)
∗

m1
(l−1)

j=1

yi
(l−1)

) (l ≥ 1) 

where Bi
(l)

 and bi
(l)

 are bias matrices, and Ki,j
(l)

 and 

ki,j
(l)

are the convolutional filters connecting the jth 

feature map in layer (l-1) with the ith feature map in 

layer l. The leaky rectified linear unit (LeakyReLU) is 

used as the activation function f(•) after the 

convolution operation. In Figure 1, the convolutional 

filter is marked by a red rectangle, the size of the filter 

for learning the EEG's synchronous characteristic is C 

* 8, the size of the filter for learning the EEG's regional 

characteristic is 1 * 8. The corresponding convolution 

result is marked by a black rectangle, its size of 1 * 1.  

Pooling layer. Let layer l be a pooling layer. Its output 

comprises m1
l = m1

l−1  feature maps of reduced size. 

Max-pooling is used as the downsampling operation. In 

Figure 1, the max-pooling filter is marked by a green 

rectangle, and the filter size is 1* 2. The corresponding 

downsampling operation's result is marked by a black 

rectangle, its size of 1 * 1.  

Concatenation layer. The concatenation layer is 

also the first fully connected layer. The TensorFlow 

outputs of the last pooling layer for two submodels are 

concatenated into one vector, and feed that vector into 

the first fully connected layer.  

Fully connected layer. Let layer l be a fully 

connected layer but not the first fully connected layer; 

then, the input of layer l is in the form of m1
l−1 feature 

maps. The identity activation function is utilized as 

activation function f(•), and the output of the ith unit 

in layer l is computed as follows: 

𝑍𝑖
(𝑙)

= g ( ∑ 𝑤𝑖,𝑗
(𝑙)

𝑍𝑗
(𝑙−1)

𝑚
(𝑙−1)

𝑗=1

) 

where 𝑤𝑖,𝑗
𝑙  and 𝑍𝑗

𝑙−1 denote the corresponding weights 

of the ith unit in layer l and the outputs of layer (l-1), 

respectively.  

Softmax layer. As shown in Figure 1, the last fully 

connected layer connects with the softmax layer that 

contains 3 neurons. It is noteworthy that the last fully 

connected layer also contains 3 neurons and connects 

with the softmax layer by the one-on-one method. Since 

the softmax layer corresponds to output classes 

(normal, medicated depressive patients, and 

unmedicated depressive patients), the feature matrix 



 

learned by the last fully connected layer could be used 

to analyze the feature differences among the samples of 

three categories. 

Loss function. The categorical cross-entropy is 

used as the loss function to compare the probability 

distribution with the true distribution {L1, L2, ..., LT} 

represented by the one-hot coding strategy. The loss 

function is computed as follows: 

Loss = − ∑ ∑ 𝐿𝑖,𝑗 ∗ log (𝑝𝑖,𝑗)

𝑀

𝑗=1

𝑇

𝑖=1

 

where T is the number of verification data samples, M 

is the number of classes, 𝑝𝑖,𝑗  is the predicted value 

obtained from the fully connected layer, and 𝐿𝑖,𝑗 is the 

true value. 

 

3 Experiment and Results 

3・1 Data Collection 

All depressive patients were recruited from 

Beijing Anding Hospital, China. Every patient willing 

to participate in this project had to meet the inclusion 

and exclusion criteria specified by a clinician. The 

normal control group of the experiment was required to 

have no psychiatric disorders in the past and was also 

screened by a clinician. Ultimately, 35 subjects were 

recruited, who included 12 normal controls (6 females 

and 6 males) aged from 21 to 55 (with mean ± 

standard deviation (Std.) being 26.4 ± 9.8 years), 12 

unmedicated patients (6 females and 6 males) aged 

from 25 to 54 (with mean ±  Std. being 28.6±7.3 

years), and 11 medicated patients (6 females and 5 

males) aged from 20 to 56 (with mean ± Std. being 

29.8±10.6 years). 

In the experiment, subjects are asked to record 

their EEG data in the resting state. Specifically, 

subjects would sit on a sofa and keep eyes closed for 8 

minutes while not intentionally thinking of anything in 

a dimly illuminated and soundproof room. They are 

also asked to maintain a minimum arousal level 

without falling asleep. In the data collection process, 

we select several representative brain regions from the 

prefrontal cortex (PFC), the frontal cortex, and the 

parietal cortex as EEG-collecting locations that were 

demonstrated to be closely related to depression.  

To record multichannel EEG data, six surface 

electrodes (Fp1, Fp2, F3, F4, P3 and P4) are placed on 

the scalp according to the 10-20 international electrode 

system. EEG recordings are acquired using a platform 

(Brain Products Ltd., Germany) with BrainAmp 16-bit 

A/D convertor (ADC). The data collection software 

named BrainVision Analyzer provides a head model for 

volume conduction properties and supports localization 

of the signal sources of different EEG channels. This 

function is used to mitigate the effects of volume 

conduction on raw EEG data samples before exporting 

the latter. The down sampling rate of 500 Hz is used to 

downsample the collected EEG data. The software used 

for EEG data analysis is written in Python 3.0 

configured with TensorFlow. 

3・2 Data Preprocessing 

The EEG data recorded in one trial is cut into three 

snippets, and the median snippet with the duration of 5 

minutes is kept for analysis. The time snippets of the 

beginning 30 seconds and the last 2 minutes and 30 

seconds are removed. Z-score normalization is used to 

overcome the amplitude scaling problem and remove 

the offset effect. For every median snippet, the data 

record of 5 minutes is fragmented into 50 data samples. 

Every sample contains 3072 sampling points (covering 

approximately 6.144 seconds). Based on the channel 

order of Fp1, Fp2, F3, F4, P3 and P4, the fragments of 6 

channels are realigned into a data matrix. Every data 

matrix is fed into the CNN model as a new independent 

data sample.  

The dataset ultimately used in this study includes 



 

 

Fig.1  Architecture of the HybridEEGNet model for three-category classification 

Table 1  Parameters fixed in each layer of the HybridEEGNet model 

Layers Type Input size Output size Filter size Stride 

‘syn’ ‘sin’ X y 

0 Input 6*3072 6*3072 - - - - 

1 Convolution 6*3072 6*3072*6 6*8 1*8 1 1 

2 Max-pooling 6*3072*6 6*1536*6 1*2 1*2 1 2 

3 Convolution 6*1536*6 6*1536*6 6*8 1*8 1 1 

4 Max-pooling 6*1536*6 6*768*6 1*2 1*2 1 2 

5 Convolution 6*768*6 6*768*6 6*8 1*8 1 1 

6 Max-pooling 6*768*6 6*384*6 1*2 1*2 1 2 

7 Convolution 6*384*6 6*384*6 6*8 1*8 1 1 

8 Max-pooling 6*384*6 6*192*6 1*2 1*2 1 2 

9 Convolution 6*192*6 6*192*12 6*8 1*8 1 1 

10 Max-pooling 6*192*12 6*96*12 1*2 1*2 1 2 

11 Convolution 6*96*12 6*96*12 6*8 1*8 1 1 

12 Max-pooling 6*96*12 6*48*12 1*2 1*2 1 2 

13 Convolution 6*48*12 6*48*12 6*8 1*8 1 1 

14 Max-pooling 6*48*12 6*24*12 1*2 1*2 1 2 

15 Convolution 6*24*12 6*24*12 6*8 1*8 1 1 

16 Max-pooling 6*24*12 6*12*12 1*2 1*2 1 2 

17 Concatenation 6*12*12*12 32 - - - - 

18 Full connection 32 16 - - - - 

19 Full connection 16 3 - - - - 

20 Full connection 3 3 - - - - 

21 Softmax 3 3 - - - - 

 



 

a total of 1750 data samples (consisting of 600 data 

samples of normal control, 600 data samples of 

unmedicated depressive patients, and 550 data 

samples of medicated depressive patients). 

3・3 Comparison Baselines 

Five kinds of CNN models are constructed as 

baseline approaches for result comparison. The 

simplified descriptions of model features of every 

baseline approach are as follows: 

SynEEGNet. Compared with HybridEEGNet, we 

only keep the submodel part that learns the EEG's 

synchronous characteristic and remove the 

concatenation operation in the first fully connected 

layer. The last three fully connected layers, the softmax 

layer, and the model input are the same as those of 

HybridEEGNet.  

RegEEGNet. Similarly to the construction of the 

SynEEGNet model, we only keep the submodel part 

that learns the EEG's regional characteristic and 

remove the concatenation operation in the first fully 

connected layer. The last three fully connected layers, 

the softmax layer, and the model input are also the 

same as in HybridEEGNet.  

DeepConvNet [18]. The model uses a 

convolutional filter to mix the EEG data of multiple 

channels into a row, which might make it unable to 

fully use the spatial distribution characteristics of EEG 

activities originating from multiple brain regions.  

AchCNN [24]. We refer to the CNN model 

constructed by Acharya et al. as AchCNN because we 

did not find any specific model name in the paper. Since 

the researchers demonstrated the advantage of 

CNN-based depression discrimination by comparing 

results of their model with those of several traditional 

methods (SVM, logistic regression, bagged tree, etc.), it 

is a valuable comparison baseline in this paper.  

EEGNet [25]. An operation similar to that of [18] 

is used by EEGNet to merge the EEG data of multiple 

channels into one row as the output of the first 

convolutional layer.  

For the baselines, namely, the SynEEGNet and 

RegEEGNet models that are bases of our model, the 

respective hyperparameters are tuned until we 

obtained the optimal classification accuracy. 

Afterwards, for a fair comparison, the HybridEEGNet 

used those parameters. For DeepConvNet and EEGNet, 

as their inputs and outputs are different from those of 

our model, we did not directly use their publicly 

released software implementations. Instead, we 

referred to the latter and subsequently built them and 

tuned the hyperparameters the same way as in [18]. 

For AchCNN, we reproduced the CNN network and 

tuned the hyperparameters the same way as in [24].  

3・4 Evaluation Metrics 

Evaluation metrics including sensitivity (Sen), 

specificity (Spc) and recognition accuracy (Acc) are used 

to evaluate the classification performance of models. 

Sensitivity refers to the ability of a classifier to 

correctly detect positive samples. Specificity refers to 

the ability of a classifier to correctly detect negative 

samples. Recognition accuracy refers to the ability of a 

classifier to correctly detect the samples with different 

labels. The above metrics are calculated using the 

following formulas: 

SEN = TP (TP + FN)⁄ , 

SPC = TN (TN + FP)⁄ , 

ACC = (TP + TN) (TP + FP + FN + TN)⁄ . 

where TP means true positives, TN denotes true 

negatives, FP represents false positives, and FN 

corresponds to false negatives. For three-category 

classification, the one-against-all approach is utilized 

to calculate the evaluation metrics. In other words, we 

take turns at using one of the three categories as the 

positive label and the remaining two categories as the 



 

negative label. The results of 3 evaluations are 

averaged for estimating the model performance. 

3・5 Parameter Settings 

The tenfold cross-validation method is used to 

validate the classification performance of each model. 

In the training phase of each fold, all variables are 

initialized with random values following Gaussian 

distributions and trained for 1000 epochs; the batch 

size of every epoch is 300 data fragments. In each epoch, 

a random resampling strategy for selecting the training 

data is used to avoid the model performance decrease 

caused by the sample disequilibrium. A total of 100 

medicated depressive patient data fragments, 100 

unmedicated depressive patient data fragments, and 

100 normal control data fragments are used to train the 

model in every iteration. The other parameters are 

momentum of 0.9, weight decay of 0.0005, the (base) 

learning rate of 0.001, and dropout rate of 0.9. A 

regularization term is added into the loss function of 

the proposed model so as to avoid overfitting. In the 

testing phase of each fold, 60 data samples of normal 

control, 60 data samples of unmedicated depressive 

patients, and 55 data samples of medicated depressive 

patients are utilized as the testing sample. The metrics' 

values resulting from 10 folds are averaged for 

estimating the model performance to prevent any 

model from obtaining good results by chance.  

 

4 Results 

Table 2 compares the classification results of 

HybridEEGNet and baseline approaches using the 

confusion matrix and evaluation metrics. In the table, 

MD, UnMD and NC represent the medicated 

depressive patient, unmedicated depressive patient 

and normal control categories. The Positive column 

shows that the samples of each category are used as 

positive samples in turn to calculate the evaluation 

metrics given in columns Sen (%), Spe (%) and Acc (%).  

For each model, the results of average evaluation 

metrics are also given. From Table 2, we can see that 

HybridEEGNet achieves the best performance. The 

average sensitivity, specificity and accuracy are 68.78%, 

84.45% and 79.08%, respectively. This result 

demonstrates that the HybridEEGNet model that 

merges the EEG's synchronous and regional 

characteristics is more suitable for distinguishing 

depressive patients than other kinds of CNN 

architectures. Examining the confusion matrix, we 

observe that in the condition of considering the 

unmedicated depressive patient samples as the positive 

samples, HybridEEGNet attains the sensitivity of 

58.83%, i.e., it does not distinguish well the 

unmedicated depressive patient samples from the 

samples of the other two categories. The sensitivity 

results of other baseline models are also lower than in 

the conditions of considering medicated depressive 

patient or normal control samples as the positive 

samples. This might be caused by the EEG activity 

state of unmedicated depressive patients being a 

median state between a medicated state and the 

normal state.  

Additionally, the table shows that most EEG 

samples of unmedicated depressive patient are 

classified as EEG samples of medicated depressive 

patient. This finding indicates that EEG samples of 

unmedicated depressive patients and medicated 

depressive patients have common EEG characteristics 

even though medicated depressive patients received 

medical treatment.  

The classification performance of HybridEEGNet 

is compared with that of baseline models from the 

perspective of model structure. On the one hand, 

compared with SynEEGNet and RegEEGNet, 

HybridEEGNet integrates the feature extraction part 



 

of the two models, and attains a higher classification 

performance, which demonstrates that the integration 

of the synchronous and regional EEG characteristics 

improves depression discrimination ability of the CNN 

model. On the other hand, compared with models that 

ignore synchronous EEG characteristics, 

HybridEEGNet also attains a better classification 

performance, which indicates the significance of 

learning spatial distribution characteristics of EEG 

activity generated by multiple brain regions for the 

task of depression discrimination.  

Table 2 Comparison results of HybridEEGNet and baselines using the confusion matrix and evaluation metrics 

Model  Actual Evaluation metrics 

Predicted MD UnMD NC Positive Sen (%) Spe (%) ACC 

(%) 

HybridNet MD 40.8 18.6 12.1 MD 74.18 74.41 74.34 

UnMD 5.7 35.3 3.9 UnMD 58.83 91.65 80.4 

NC 8.5 6.1 44 NC 73.33 87.3 82.51 

 average 68.78 84.45 79.08 

SynEEGNet MD 37.1 23.5 5.5 MD 67.45 75.83 73.2 

UnMD 5 27.1 4.2 UnMD 45.16 92 75.94 

NC 12.9 9.4 50.3 NC 83.83 80.6 81.71 

 average 65.48 82.81 76.95 

RegEEGNet MD 38.1 29.1 13.8 MD 69.27 64.25 65.82 

UnMD 5.4 22.4 6.5 UnMD 37.33 89.65 71.71 

NC 11.5 8.5 39.7 NC 66.16 82.6 76.97 

 average 57.5 78.83 71.5 

DeepConvNet MD 38.3 45 9.3 MD 69.63 54.75 59.42 

UnMD 2 4.1 1.6 UnMD 6.83 96.86 66 

NC 14.7 10.9 49.1 NC 81.83 77.73 79.14 

    average 52.76 76.45 68.19 

AchCNN MD 30.3 37 12.1 MD 55.09 59.08 57.82 

UnMD 6 8.1 5.6 UnMD 13.5 89.91 63.71 

NC 18.7 14.9 42.3 NC 70.5 70.78 70.68 

 average 46.36 73.25 64.07 

EEGNet MD 41.1 23.1 10.8 MD 74.72 71.75 72.68 

UnMD 9.4 25.4 7.5 UnMD 42.33 85.3 70.57 

NC 4.5 11.5 41.7 NC 69.5 86.08 80.4 

 average 62.18 81.04 74.55 

 



 

5 Discussion 

This study is the first attempt to utilize a CNN 

model for differentiating normal controls from 

medicated and unmedicated depressive patients, and 

furthermore to analyze and compare the differences 

between the features learned by the convolutional layer 

or the fully connected layer using the deep-dreaming 

algorithm. In other words, the primary focus in this 

paper is mainly on two aspects: HybridEEGNet model 

construction and feature analysis.  

In the constructed HybridEEGNet model, the 

synchronous EEG characteristic and the regional EEG 

characteristic are learned by different filters, and the 

fusion feature is used to distinguish depression. 

Although the results show that the spatially global 

voltage patterns contain effective depression-specific 

information, the filter for learning the synchronous 

EEG pattern did not strictly follow the approach of 

learning such global patterns. Specifically, The filter of 

size 6 * 8 is used to learn the synchronous 

characteristic in the convolutional layer. The first row 

of the feature matrix of a convolutional layer could be 

regarded as the joint result of processing the EEG data 

of 6 channels. However, with the movement of the filter 

in the channel direction, the zero-padding method is 

utilized to pad the input of a convolutional layer if the 

filter does not fit the input, i.e., the remaining rows of 

the feature matrix could only be regarded as the joint 

result of EEG data and zeros. One alternative way to 

improve this is by designing different filters with 

different sizes. Specifically, a filter of size 5 * 8 could be 

designed to process the input data of five EEG channels 

in a convolutional layer, and a filter of size 4 * 8 could 

be used to process the input data of four EEG channels 

in a convolutional layer. Furthermore, the 

characteristics of functional brain networks in 

depressive patients have been investigated by many 

studies that examined the resting-state scalp EEG data, 

i.e., the EEG activity in functional brain networks is 

affected by depression [26-29]. In this context, different 

convolutional filters could be used to process the EEG 

data of different functional brain networks. The 

inception network [30] that uses different filters to 

extract features and fuses them to obtain more abstract 

and effective features seems to be appropriate for this 

task. Although our results have similarities with the 

findings of previous studies, these results are still in 

the experimental stage. In future research, it would be 

more appropriate to use a dataset with a larger scale 

and more EEG channels for validating the reliability of 

our results. Additionally, those results could be used in 

reverse to discriminate normal controls from medicated 

and unmedicated depressive patients. Specifically, we 

can go back to a traditional approach and extract 

frequency power features from the raw EEG data based 

on the above findings. 

Exploiting the spatial distribution and amplitude 

range difference of the EEG rhythm between 

depressive patients and normal controls, other 

classifiers could be used to make our results more 

interpretable and provide a neurobiological 

interpretation of the relationship between the findings 

and the neuropathology of the depressive disorder.  
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