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Abstract 

 

Human brain, as the critical information-processing and control center, exhibits 

activity’s specificity underlying the various patterns coupled with specialized functions, 

behaviors and health status. One of the key ideas is that we understand enough about the 

brain intelligence, and then we can develop the human-like intelligence approach towards 

human-level AI society. Another key idea is that decoding brain health could push forward 

the progress of smart health applications. With the convergence of artificial intelligence, 

big data and cognitive neuroscience, brain computing has rapidly advanced our 

understanding of the frontiers on brain intelligence and brain health.  

This dissertation presents a novel brain computing approach, building a Data-Brain 

driven general intelligence model to realize human-level collective intelligence and 

develop brain-inspired intelligent technologies towards multi-dimensional wisdom 

services. The model is stitched together from the three-layered Knowledge (K) – 

Information (I) – Data (D) architecture to process knowledge at the top layer, information 

in the middle layer, and data at the lowest layer, with the capabilities of reasoning, 

computing and learning: 1) a conceptual Data-Brain at the top of the K-I-D architecture 

is developed to systematically represent the characteristics and context of the human 

thinking and behaviors, with respect to all major aspects of the Brain Informatics 

methodology surrounding systematic modeling of brain functions, systematic design of 

cognitive experiments, systematic management of brain data, and systematic data analysis 

and simulation; 2) the semantic vector in the middle of the K-I-D architecture is designed 

to realize traceability and provenance of analysis and data, building bridges between the 

knowledge layer and the data layer; 3) a sample library at the lowest of the K-I-D 



 iv 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

architecture is constructed to integrate brain big data resource as the extensional 

representation of human thinking and behavior. Based on the K-I-D architecture, a K-I-D 

loop is realized to carry out never-ending learning, supporting design and implementation 

of systematic cognitive experiments, the KID and DIK-driven dual-directed inference, 

and evidence combination and fusion computing towards problem solving of the complex 

brain. Meanwhile, the human-in-the-loop paradigm is covered to provide the thinking-

supported AI, connecting human with the model before, during and after learning 

processes. Hence, the general intelligence model can enhance learning performance by 

using previously learned knowledge and experience, followed by empowering subsequent 

learning abilities and habits, continuously. 

One focus of Data-Brain driven general intelligence model is placed on understanding 

human intelligence towards human-level AI society, which is studied by analyzing brain 

information-processing mechanisms from both perspectives of functional segregation and 

integration. On the one hand, the task-state functional magnetic resonance imaging data 

are computed to explore the information-processing capacities of brain regions through 

both univariate and multivariate pattern analysis methods. On the other hand, the data are 

computed to explore the characteristics of functional connectivity between connected 

nodes from different brain regions through the graph theoretical approach, focusing on 

the role of regional nodes in large-scale brain networks. These brain computing results 

are identified as different evidential types with dynamic weights, which are further fused 

into such a never-ending learning paradigm to obtain uncertainty distributions for 

quantitative assessment and interpretations of brain functions. Experiments demonstrated 

the use of quantifying uncertainty distributions, by which we could obtain multi-level 

brain patterns to infer their contributions to a specific or multiple functional domains. In 



 v 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

this study, the general intelligence model is used to interpret the specificity of human 

reasoning within the brain region of interest (i.e., the dorsolateral prefrontal cortex) as 

well as the other control brain regions. In the KID inference process, the model fuses the 

task-driven brain encoding results. It validated the hypothesis that the dorsolateral 

prefrontal cortex is highly related to inductive reasoning. Reversely, in the DIK inference 

process, the model fuses the data-driven brain decoding results. It showed that the 

dorsolateral prefrontal cortex has a strongly support to inductive reasoning. Thus, multi-

aspect analyses based on the proposed general intelligence model suggest that the 

dorsolateral prefrontal cortex may play a causal role in inductive reasoning. It should be 

mentioned that the model also makes it possible to generate new hypotheses about the 

mapping between inductive reasoning and several regions such as left middle temporal 

gyrus, right inferior temporal gyrus, fusiform gyrus and bilateral angular gyrus, which 

were identified by the whole-brain exploratory analysis. Additionally, several functional 

circuits such as the fronto-striatal circuits (including the key brain regions in the prefrontal 

cortex and caudate) were detected by functional connectivity analysis, which were not 

reported in previous studies. These results may act as new potential hypothesis, and 

inspire us to design and run new experiment to test them. 

Another focus is placed on the smart health applications of Data-Brain driven general 

intelligence model, which are studied to promote our understanding of the brain-mental 

health by integrating the computational cognitive neuroscience methods. The general 

intelligence model-aided classification system is constructed to promote progress in the 

field of translational research. On the basis of uncertainty distributions learned from the 

human intelligence scenario, the brain patterns are identified into different levels, and 

then are input into the classifiers. On the one hand, the system realizes the classification 



 vi 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

of the groups with mental disorders and healthy controls under different task states, taking 

into account the regional brain patterns from the functional segregation perspective. On 

the other hand, the nodal networks with different-level uncertainty distributions, together 

with various functional networks from the proposed brain atlas, are constructed as the 

connected brain patterns to estimate their contributions for the classification performance 

and verify the role of various functional networks on mental disorders. Experiments were 

performed to evaluate characteristics of the learned brain patterns on convergent, 

robustness and specificity. In this study, the greater accuracy for the recognition of the 

samples with major depressive disorder is achieved by leveraging the benefits of the 

general intelligence model and ensemble learning methods. Meanwhile, the selected brain 

patterns indicate the similar robust degree aligned to the functional networks of default 

mode, fronto-parietal, sensorimotor and visual. Moreover, the selected brain patterns also 

indicate the similar specific degree aligned to the functional networks of salience, limbic 

lobe, ventral attention, dorsal attention, subcortical and cerebellum. 

More broadly, this study advances the machine intelligence paradigm for decoding the 

complex cognitive functions and mental disorders within the human brain. While the 

single-view learning is necessary, it is of limited use in systematic understanding and 

multi-aspect interpretations of brain intelligence and brain health. As such, the 

understanding of future directions in brain investigation will explode with never-ending 

learning, using evidence combination and fusion computing. Towards the goal of 

intelligent society, we will focus on brain and mental health by investigating intelligent 

health technology that comprehensively utilizes health-centered physical, mental and 

social big data within artificial general intelligence system. We will systematically 

respond to the lifestyle-related diseases such as mental disorders, diabetes, cancer, stroke 
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and cardiovascular disease, providing ubiquitous services of the health-disease 

management throughout the life cycle and the integration of “health-medical-welfare”. 

By integrating brain big data as the extensional representation of the human information-

processing system, the Data-Brain can be used as a bi-directional decoder between the 

inner brain information and the outer brain information by connecting brain and network 

with big data; an energy converter between brain science and artificial intelligence; and 

an engine from systematic brain-machine intelligence research to new AI industry chain 

in the connected world. The Data-Brain driven general intelligence model would be 

considered as a core part to fit different scenarios on brain intelligence, brain health, and 

brain Internet. 
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研究内容要約： 

「データブレインドリブン汎用知能モデル及び知能健康への応用」 

 

近年の人工知能技術と脳科学を組み合わせることによって、人間思考のメカニズムの解明に

よる認知症やうつ病の治療及び人間の学習や推論モデルを応用した人工知能の開発が期待され

ている。 

それに対し本研究では、脳情報学方法論に基づいて、人間の脳をひとつのビッグデータを持つ

情報処理システムとみなし、階層化された知識(K)-情報(I)-データ(D)アーキテクチャに基づくネ

バーエンド学習をしながら、「体系的な脳機能の研究; 多目的に活用する体系的認知実験の設計

と実施; 知識ベースを考慮した体系的ビッグデータの管理; 体系的ビッグデータの分析; 汎化知

能モデルによる知的サービスの提供」という機能を提供するデータブレインを開発し、革新的な

脳ビッグデータコンピューティング方法を提案した。また、認知症・うつ病の病理の解明、治療、

予防や、AI ・ウェブインテリジェンス(WI)の新たな可能性を示した。具体的には、次に４つの

主な研究成果を挙げる。 

１．階層化された知識-情報-データビッグデータセンター、すなわち K-I-D アーキテクチャ      

知識層 K：脳機能、実験タスク、データ管理及び分析方法の視点から体系的な脳機能研究

プロセスを表現するための複数のナレッジグラフ。 

情報層 I：セマンティックベクトルの形式でリソースの多面的な情報を記録するマルチ情

報ウェアハウス。 

データ層 D：マルチ課題の脳機能画像ビッグデータを中心として、マルチモーダル・マル

チスケールのビッグデータの体系的な管理。 

２．データブレインドリブン汎化知能モデルとするネバーエンド学習 NEL エージェント 

ネバーエンド学習は、人間のように、何年にもわたる多様な主に自己監督の経験から、以

前に学んだ知識を使用してその後の学習を改善し、プラトーを回避するための十分な内省

を備えた多くの種類の知識を学習しながらパフォーマンスが向上する。K-I-D アーキテクチ

ャに基づいて、思考空間としての K-I-D ループを構築し、人間のように機能するネバーエン

ド学習(NEL：Never-Ending Learning) で革新的な脳ビッグデータコンピューティング方法を

提供する。 

 

 



 x 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

 

３．多目的に活用する体系的認知実験の設計と実施 

まず脳認知機能研究の目的に応じて主な実験タイプと補助実験タイプ、及び各実験タイ

プの関連性の推論ルールを制定し、体系的な実験の設計と実施のテンプレートグラフを作

成する。次に脳ビッグデータセンターから新しい実験タスクをサンプリングし、データブレ

インモデルと推論ルールを組み合わせて、新しい実験タスクの属する補助実験タイプを識

別し、設計した実験タスクを実験テンプレートグラフに記入する。すべての実験タイプが設

計されるまで、上記の手順を数回実行する。この技術により、体系的な高次脳機能の研究の

ため、人間参加型（HITL：Human-in-the-Loop）の体系的な脳ビッグデータの収集、多面的な

解析・理解が可能となる。 

4．ネバーエンド学習による課題 fMRI 脳ビッグデータの融合と体系的分析 

まず主な実験と補助実験、各実験間の推論ルール、証拠の重みを含む実験テンプレートグ

ラフを制定する。次に実験テンプレートグラフに従って、脳ビッグデータセンターから解析

が必要なデータ・情報・知識を取得し、K-I-D ループにおけるマルチ課題 fMRI 脳機能画像

を多面的に解析しながら、複数の証拠に基づいた不確実性推論や融合的計算を通じて、複雑

な脳機能の解明、心理状態の解読、神経難病や精神病態の診断を行う。 

本論文では、全 7 章から構成されており、その概要は以下の通りである。第 1 章では、序論と

して研究の背景と方向性及び枠組みについて示した。第 2 章では、人間の認知と機能障害、脳を

対象とする fMRI 技術と脳情報学方法論を活用し、世界範囲の重大な脳研究の現状に関して 4 つ

の側面から整理した。第 3 章では、データブレインドリブン汎化知能モデルを提案し、K-I-D ア

ーキテクチャ、ネバーエンド学習、人間参加型の AI 開発、体系的認知実験の設計と実施ルール

などについて述べた。第 4 章と第 5 章では、脳機構の機能分離の観点から単変量及び多変量パタ

ーン分析法、脳機構の機能統合の観点から中心性などを定量化する脳機能的ネットワーク指標

の評価法について、それぞれを開発し、さらに提案した汎化知能モデルは人間の帰納的推論の神

経メカニズムの解明に応用し、提案した汎化知能モデルの有効性を示した。第 6 章では、橋渡し

研究として、提案法のうつ病患者の脳機能異常の解明や知能健康への応用を試みた。第 7 章は総

括であり、申請論文の研究成果をまとめ、今後研究や社会実装に向けた解決すべき問題について

展望した。
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Chapter 1 

                                                                                   

 

 

Prologue 

 

Chapter 1 starts with the background introduction to understand complexity in the 

human brain and the motivation for accelerating the use of new techniques and methods 

in such cross-cutting areas. Following with the objectives to be addressed, the theme of 

the thesis is to investigate and design efficient intelligence approach of realizing brain 

computing with translational applications. We then summarize the research contributions 

and present the organization of this thesis at the end of the chapter. 

 

1.1 Introduction 

The big brain controls most of the activities of the human body and contributes the 

intelligence capability that is related to various brain functions such as perception, 

attention, emotion, memory, language, calculation, reasoning, planning, decision-making, 

problem-solving, learning, discovery and creativity. Exploring the human brain is an 

interesting and important work, especially from the information-processing system 

perspective to study brain mechanisms corresponding to the essential functions of the 

brain, ranging from perception to thinking. In this context, the segregated and integrated 
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brain activity patterns are investigated by the measures of regional activation and 

functional connectivity. 

As two sides of the same coin: the healthy brain contributes the normal capability that 

involves various cognitive functions such as reasoning, calculation and problem solving; 

however, the brain abnormality increases general risk of neuropsychiatries such as 

depression, mild cognitive impairment and dementia. On the basis of basic cognitive 

neuroscience, another key focus is to explore the relationships between the normal brain 

function and dysfunction towards smart health applications. The complex brain and its 

multifaceted role have created an increasing need for translation research, by which brain 

intelligence can be developed systematically from multiple aspects, and at the same time, 

build bridges between it and clinical practice. 

To measure brain functions among cognition, emotion, disease, and their relations, the 

multi-dimensional view has been inspected by integrating various data, methods, 

techniques and tools, for example: from the macro-scale view, the cognitive ability could 

be quantitatively measured by behavioral experiments (such as “hypothesis testing” and 

“observational” forms) and cognitive tests (such as the Cambridge Cognition 

Examination, the Montreal Cognitive Assessment and the Cognitive Abilities Screening 

Test); from the meso-scale view, the neuroimaging techniques are commonly used to 

study human brain functions in vivo, such as functional magnetic resonance imaging 

(fMRI) and electroencephalography (EEG); from the micro-scale view, the functions 

could be explained by the cellular and molecular diversity, such as genomics, protein, and 

axis- and cell-type. For example, from a single investigation view, a brain data obtained 

by a specific cognitive experiment and neuroimaging technique is collected, processed 

and analyzed to test hypotheses about the relationships between brain structure and 
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cognitive function. Over time, such brain data at various scales are collected continuously 

to obtain the big data characteristic, providing evidence for demonstrating the complex 

brain with the interwoven characteristics of mental processes, experimental design, data 

states and analytical details. For this, the fusion computing approach, when compared to 

its commonly analysis strategy from the single view, becomes more urgent to integrate 

multi-aspect brain data for systematic understanding of brain intelligence and brain health. 

Such approach led on naturally to relevant thinking, concerning how to systematically 

cope with a brain science problem, how to systematically design multiple experimental 

tasks, how to systematically integrate brain big data, and how to systematically compute 

the brain data with complex contexts. To meet those challenges, the general intelligence 

model, together with the never-ending learning and human-in-the-loop mechanisms, is 

studied to build a bridge from the basic cognitive neuroscience to translational study, 

serving as a basis towards smart health. This thesis is centered around enhancing 

comprehension of the open question about the complex brain function-structure 

relationships and their extensible translational applications towards smart health. As one 

of the most important neuroimaging techniques, the fMRI will gain more visibility, which 

has produced revolutionary advances in brain science from its inception. 

1.2 Motivation 

With the progress of big data and artificial intelligence, brain investigation has 

embarked upon a new phase with motivations to pooling efforts in the three representative 

directions. 

1.2.1 Challenges in the Brain Big Data Era 

When it comes to big data in the field of brain science, big neuroimaging will 

undoubtedly be the most representative aspect (e.g., human neuroimaging studies with 
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very large subject numbers and amounts of data). In general, the neuroimaging datasets 

for a specific study may not pose major difficulties for processing and analysis using 

existing machine learning algorithms and statistical methods [1]. Once the brain data is 

processed and analyzed from multi-level multimodal viewpoints in large-scale datasets, 

however, considerable challenges emerge. For instance, investigators explore the big 

brain by using (non) invasive technologies at various spatiotemporal scales and their 

possible integration [2-5]. The bulk of the work seeks to observe brain activities using 

advanced neuroimaging and electrophysiological technologies, such as fMRI, ERP 

(Event-Related Potential), MEG (Magnetoencephalography), fNIRS (functional Near-

Infrared Spectroscopy), PET (Positron Emission Tomography) and LFPs (Local Field 

Potentials), as well as other sources like eye-tracking, wearable, portable micro and nano 

devices. Some labs/institutes are dedicated to accelerating understanding of neural tracks, 

shapes and their functions at a microscopic level, and trace substructures of cells and 

monitor molecule dynamics with nanoscale precision [6, 7]. Such new experimental 

techniques, such as toto imaging, deep tissue imaging, optogenetics and dense-electrode 

recording, are also generating massive amounts of brain data at very fine spatial and 

temporal resolutions. Others are working to overlay gene-expression patterns, 

electrophysiological measurements and other functional data on those [8-13]. These 

approaches involve different technical means – all create big data from different research 

perspectives. As the ultimate goal of most investigators is to advance scientific knowledge, 

it would be ideal to use multi-source information from large multimodal datasets at 

various spatiotemporal scales to inform multi-aspect interpretations. Hence, the “fusion 

science” or “data fusion” from multiple perspectives needs to be further concerned. 
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As discussed earlier, understanding the complex big brain from different views has 

produced all kinds of brain data, which has the significant characteristics with big data. 

In the previous, the data from different brain studies are distributed throughout various 

sites/centers from local and global sides. It is difficult to produce more energy towards 

the overarching goal of considering multi-aspect brain data systematically, 

simultaneously and continuously. Open science promotes the new progress of brain 

science, especially making it easier to observe, integrate, reproduce, re-use and share 

brain resource at various scales. In this case, neuroscience is entering a collaborative era 

in which the scattered data are integrated by large scientific projects in any countries [14, 

15]. For example, the powerful vision of global collaboration has motivated multiple 

large-scale brain initiatives across the United States (the Brain Initiative [16] generally 

and the Human Connectome Project [17] specifically), the European Union (the Blue 

Brain Project [18] and Human Brain Project [19]), Japan (Japan’s Brain/ MINDS project 

[20]), Korea (Korea Brain Initiative [21]), China (the China Brain Project [22]), Canada 

(Brain Canada [23]) and Australia (Australian Brain Initiative [24]). 

Integrating multiple data sources is the fundamental work, which is concerned about 

not only data management and sharing in the era of open brain science, but also needs to 

meet the requirements of systematic fusion computing. In particular, when faced with the 

multimodal and multi-scale brain data from different research communities and projects 

with various contexts and purposes, more practices would be welcomed. To data, many 

platforms, systems, databases, standards and tools have been developed to embrace the 

brain big data era, which support our endeavors towards these goals of better data 

integration and computing. For example, a growing number of platforms are used to 

integrate brain data at various scales, such as the raw data scale (such as 
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OpenfMRI/OpenNeuro [25, 26], fMRIDC [27, 28] and FCP/INDI [29, 30]), the statistical 

maps scale (such as NeuroVault [31]), the coordinate-based data scale (such as 

NeuroSynth [32] and BrainMap [33, 34]) and the mixed scales (such as HCP [17] and 

ADNI [35]).The multimodal brain data are also integrated by collaboration from various 

populations, such as UK biobank [36, 37], CoRR [38], CMI-HBN [39], ABIDE [40, 41] 

and ADHD-200 [42]. For details, Table 1.1 reviews several standards, tools and platforms 

related to neuroimaging and associated data in the era of open brain big data. Although a 

variety of means have been provided to deal with brain big data, the core goal is still 

placed on the basic functions, such as brain big data storage, management, dissemination 

and visualization. The exploration to address core issues of grasping brain big data to the 

purpose of the systematic fusion computing is still running on the road. For example, the 

brain big data related to the multi-domain cognitive functions and multi-aspect cognitive 

experimental tasks are entwined to increase complexity of brain data, thereby increasing 

such difficulty of systematic fusion computing. For this, the key is to investigate the novel 

brain big data integration architecture, which needs: multi-dimensional knowledge graph 

to represent the whole brain investigation lifecycle at the knowledge granularity, 

including concepts and their relations about cognitive function, experimental task, data 

collecting and processing details; a warehouse to describe properties and parameters of 

the brain data and study results at the information granularity; the multi-source brain data 

collected from the local and global side at the data granularity. Within this architecture, 

the computing operations could be carried out in the legally separated layers of knowledge, 

information and data. Meanwhile, the fusion computing operations could also be realized 

by driving these three interconnected layers. In the current work, such a layered data 

integration architecture is studied.  
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Table 1.1: Overview of standards, databases, tools and platforms in brain big data era. 

Name Description 

BIDS [43] 

The BIDS (Brain Imaging Data Structure, https://bids.neuroimaging.io) is a standard for organizing, 

annotating and describing data collected during neuroimaging experiments. It is based on a formalized 

file/folder structure and JSON based metadata files with controlled vocabulary. 

BrainMap [34] 

The BrainMap (http://www.brainmap.org) is a database of published functional and structural neuroimaging 

experiments with coordinate-based results, which provides tools and services to the sharing and meta-

analysis of the human functional brain-imaging studies. 

CBRAIN [44] 

The CBRAIN (Canadian Brain Imaging Research Platform, https://amnesia.cbrain.mcgill.ca) is a web-based 

collaborative research platform, which offers transparent access to remote data sources, distributed 

computing sites, and an array of processing and visualization tools. 

ConnectomeDB 

[45] 

ConnectomeDB (https://db.humanconnectome.org) is a data management and dissemination platform where 

users can access, explore 

and download the latest datasets (including multiple modalities of MRI and MEG data along with associated 

behavioral data) from the Human Connectome Project. It is a highly customized instance of the XNAT 

imaging informatics platform. 

EBRAINS [46] 
EBRAINS (https://ebrains.eu) is a platform providing services and tools that assist scientists to collect, 

analyze, share and integrate brain data, and to understand human brain function and disease. 

fMRIDC [28] 

The fMRIDC (fMRI Data Center) is a publicly accessible database to facilitate progress in understanding 

cognitive processes, which seeks to collect, archive and openly disseminate the neuroimaging data 

(including raw, processed, results brain images and study metadata) from published fMRI studies. 

Neurosynth [32] 

The Neurosynth (https://neurosynth.org) is a platform that uses text-mining, meta-analysis and machine-

learning techniques to realize synthesis of human neuroimaging data and mappings between neural and 

cognitive states. 

NeuroVault [31] 
The NeuroVault (https://neurovault.org) is a web-based repository that allows researchers to collect, store, 

share, visualize and decode the unthresholded statistical maps of the human brain. 

NIDM [47] 

The NIDM (Neuroimaging Data Model, http://nidm.nidash.org) is a semantic web-based metadata standard 

that helps capture and describe experimental data, analytic workflows and statistical results via the 

provenance of the data. 

OpenNeuro [48] 

The OpenNeuro (previously OpenfMRI, https://openneuro.org) is an open platform that consists of the 

frontend, database and execution engine to enable the dissemination and reproducible analysis of 

neuroimaging data. 

XNAT [49] 

The XNAT (Extensible Neuroimaging Archive Toolkit, https://www.xnat.org) is an informatics platform 

designed to facilitate common management, exploration, dissemination and productivity tasks for 

neuroimaging and associated data. 
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1.2.2 Challenges in Systematic Brain Computing  

Human brain, as the critical information-processing and control center, exhibits 

activity’s specificity that occurs in various brain patterns coupled with specialized 

functions, behaviors and health status. Benefiting from the development of cognitive 

neuroscience and brain measurement technology, such specificities are able to be 

objectively assessed by noninvasive and invasive methods, under conditions of various 

cognitive experimental tasks. In this sense, a fundamental work is to explore the latent 

interrelations between brain pattern and function, such as human brain mapping [50] and 

connectome [51] followed by clinical settings and decision-making [52]. Figure 1.1 

highlights several key issues of brain computing and their complex relations with brain 

investigation and smart health. 

 

 

Figure 1.1: Systematic investigation of brain intelligence and brain health from the Brain 

Informatics perspective. 
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More specifically, how to handle multi-task models is one of the most core issues to 

drive brain investigation combined with both higher cognitive functions and functional 

neurological disorders. To address such a problem, the multi-task flattening analysis 

strategies [53-57] have become increasingly popular, that is, these studies mainly focus 

on the comparative approaches of multi-task data separately. However, it overlooks the 

differential contributions of each task as the evidence for evidence combination and 

inference, which imposes increasing demands on brain computing with systematic fusion. 

Brain big data not only brings huge challenges to the organization and analysis of 

multi-source heterogeneous brain data, but also potentially puts higher demands on 

computing power. There are two key drivers for the computing requirements that deserve 

special attention: the high-dimensional computation and the brain–machine interface. 

Brain can be understood as a prototype of dynamic systems with structural and functional 

complexities, which is a high-dimensional computation problem. Its high-dimensional 

characteristics are mainly related to the complexity of the brain, including the following 

three aspects and their integrations: 

• Brain computing in the structural complexity needs to face more than 80 billion 

neurons in the human brain with many different sizes and shapes that communicate 

information in trillions of connections through electrophysiological and chemical 

signals. On larger scales, the brain is also made up of many specialized regions and 

divided into several lobes, which consist of a lot of nodes with very complex 

topological characteristics. 

• Brain computing is associated with the functional complexity in understanding the 

brain information-processing mechanisms related to human thinking-related higher 

cognitive functions (such as, reasoning, calculation, problem solving and creativity) 
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and emotion-centric cognitive functions, and their interaction with other basic 

functions such as perception, attention and memory [58]. 

• The dynamic complexity in the human brain can be identified with distributed units 

and network modules organized by excitatory and inhibitory neurons, and their 

interactive patterns accompanied by high-frequency, time-dependent pattern 

conversion. Brain computing for dynamic mechanisms needs to consider both 

structure- and function-related complexities. 

Moreover, the brain simulation requires the integration of structural, functional and 

dynamic aspects from a systematic point of view, which is regarded as the most 

challenging task of high-dimensional brain computing. With the advancement and 

development of the information and communication technologies, investigators also have 

more pursuits and expectations for advanced brain detection techniques and analytical 

methods that support the brain–machine interface. The software technologies and 

hardware platforms with superior computing power are needed [59]. For instance, if one 

considers the increases in state-of-the-art neuroimaging data (e.g., ultra-high spatial and 

temporal resolution), the computational challenges will appear in the hardware device 

side for the rapid data acquisition and in the software system side for the real-time data 

processing, such as the compression and reconstruction of ultrahigh resolution images by 

the MR system. Meanwhile, we also need new emerging technologies to support the 

particular computing requirements, such as the accelerated parallel processing 

technology-based graphic processing units for designing and running deep neural 

networks. In the current work, the novel brain computing methods are studied to compute 

brain big data, information and knowledge systematically, exploring the complex human 

brain from the perspectives of structural patterns and cognitive functions. 



1.2 Motivation 11 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

1.2.3 Challenges in Artificial General Intelligence 

 

“Human-level AI will be achieved, but new ideas are almost certainly needed, 

so a date cannot be reliably predicted-maybe five years, maybe five hundred 

years. I’d be inclined to bet on this 21st century.” 

—John McCarthy, From here to human-level AI, 2007. 

 

The positive review, so poetically described by John McCarthy, gives us great 

confidence, but it also involves some serious issues, that is, where the new ideas come 

from and how to use these new ideas on the road of reaching human-level AI or artificial 

general intelligence. In his article [60], McCarthy captures the essence of a debate 

ongoing in the 20th century, and possibly earlier, surrounding two views of reaching 

human-level AI. One view posits that we understand enough about how the human 

intellect works, and then we can simulate it, whereas another view is that we can write 

intelligent programs for the intelligence present in the world. The multidisciplinary 

supports from cognitive science, artificial intelligence, computational science and big 

data are strong tools to aid in this effort, which help us to understand how the human brain 

works, and to accelerate neuroscience development and disorders (see Figure 1.2). Here, 

we use the term AI in the widest possible sense, including the works related to statics, 

machine learning and the AI research that aims to build intelligent machines [61]. For a 

long time, these statistical methods [62], the computational approaches [63], and the 

model-based methods [64] are considered to perform certain specific brain decoding task. 

Although these approaches are optimized continuously, the results obtained by them are 

usually seen as the local optimum. 
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Figure 1.2: Artificial Intelligence meets Brain Science: broader context and roadmap. 

 

Recently, using complementary information from the various approaches to cross 

reference motivates the development of general intelligence model that can process task 

broadly and intellectually. In the scenario of brain investigation, one of the most pressing 

challenges for a general intelligence model is to respond to knowledge, information and 

data in the brain big data era, systematically. Another urgent need for a general 

intelligence model is that it can handle multiple computing views from both views of 

brain region and connectivity, systematically. In addition, a general intelligence model is 

also expected to adapt to different scenarios, by which the results from one field can be 

transformed and applied to other fields. For this, the translational research is focused in 

recent years. By meeting artificial intelligence and neuroimaging, the computational 

models have been widely applied to various clinical practices, such as prediction, 

treatment, diagnosis and assessment for the P4 (Predictive, Preventative, Personalized 

and Participatory) medicine [65]. Therefore, a general intelligence model should consider 

how to map various discoveries in basic cognitive neuroscience to the computational 

models with different requirements. In the current work, the general intelligence model is 

studied to respond to the multi-source data processes, the multi-view computing 

requirements, and translational research towards the smart health applications.   
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1.3 Objectives 

As explained earlier, the single brain investigation task we usually perform today limits 

the interpretations of results, not only due to the complex nature of brain science problem 

itself, but also due to the complexity of various factors such as cognitive experiment, data 

state and analytical details. In systems neuroscience, the detail of each stage during the 

process of brain investigation is considered. Recently, most of the works in systems 

research focus on the parallel comparisons and associative discoveries of various 

components, but it seems less consideration has been given to the cumulative effect over 

time. Therefore, it is crucial to study such an intelligence model, both in theory and in 

practice, to understand complex brain mechanisms coupled with multi-aspect applications. 

Thus, the main objectives of this study are to understand and answer following questions: 

1. How to understand brain intelligence and brain health from neural microcircuits to 

macroscale intelligence systems, supported by connecting network and brain with 

big data: investigating a brain big data model to integrate knowledge, information 

and data systematically from the multi-source local and global sites.  

2. How to utilize the power of human brains and man-made networks to create a 

better-connected world towards human-level AI society: constructing a general 

intelligence model to perform systematic brain computing like human beings 

through modeling human investigation behavior during such a never-ending 

learning process. 

3. How to realize human-level collective intelligence as a big data sharing mind on 

the social-cyber-physical-thinking space by developing brain inspired intelligent 

technologies to provide wisdom services: developing computational models to 

bridge basic cognitive neuroscience with smart health applications. 
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1.4 Contributions 

In the pursuit of answers to the above research questions, we make contributions to the 

following area. 

1. Hierarchical knowledge (K) - information (I) - data (D) big data model, that is, the 

K-I-D architecture. 

• Knowledge Layer K: Multiple knowledge graphs are constructed to represent 

systematic brain investigation processes in dimensions of brain function, 

experimental tasks, data management and analytical methods.  

• Information Layer I: A multi-information warehouse that records 

multifaceted information of resources in the form of semantic vectors, 

supporting provenance and computing.  

• Data Layer D: Multi-task functional neuroimage-centric systematic 

management within a multi-modal and multi-scale brain big data center. 

(Kuai et al. Journal of Computational Science, World Wide Web Journal) 

2. Never-ending learning (NEL) agent as a Data-Brain driven general intelligence 

model. 

Never-ending learning, like human beings, is enough to use previously learned 

many types of knowledge to improve subsequent learning and avoid plateaus from 

years of diverse, primarily self-supervising experience. Based on the K-I-D 

architecture, it builds a K-I-D loop as a thinking space and provides an innovative 

brain big data computing approach to realize brain-inspired and human-liked neve-

ending learning. In addition, human beings directly interact with this loop to extend 

the ability of never-ending learning, namely human-in-the-loop. (Kuai et al. An 

International Journal of Information Fusion, World Wide Web Journal) 
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3. Design and implementation of systematic cognitive experiments for multipurpose 

investigations and applications. 

The main and supplementary experiment types, as well as the inference rule of their 

relationships between experiment types, are established according to the purpose of 

the brain cognitive function investigation, followed by an experimental template 

graph that is created and implemented to systematic experiment design. At the 

method level, an experimental task is planned to perform the data sampling from 

the brain big data center. The Data-Brain model and inference rules are combined 

to identify the new experimental task to which the supplementary experimental type 

belongs, and the designed experimental task is mapped into the template graph. By 

performing the above method several times, all experiment types would been 

designed. This method enables the systematic integration of multi-source brain data 

and the multifaceted analysis for the systematic investigation of cognitive functions. 

(Kuai et al. An International Journal of Information Fusion) 

4. Never-ending learning based evidence combination and fusion computing for 

systematic investigation using task-state fMRI-centric brain big data. 

An experiment template graph is designed and established that includes the main 

experiments and supplementary experiments, inference rules among various 

experimental types and the weight of evidence. According to the experimental 

template graph, the data, information and knowledge that need to be analyzed are 

acquired from the brain big data center. As the multi-task fMRI data are analyzed 

in the K-I-D loop for evidence combination and fusion computing, we can obtain 

the uncertainty distribution for systematic interpretations of the complex brain 

functions. Such evidence combination and fusion computing promotes our 
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systematic understandings of complex brain functions, systematic reading of 

psychological conditions, and systematic response to mental disorders. (Kuai et al. 

An International Journal of Information Fusion, IEEE Access, BI2021, BI2019)  

1.5 Organization of the Thesis  

The main contents of this thesis consist of seven chapters that are organized as shown 

in Figure 1.3. 

 

  
Figure 1.3: Organization of this thesis. This thesis consists of seven major chapters. 

 

Chapter 2 introduces related works, including the theoretical foundation to the 

functional segregation and integration that are two core directions in the human brain 

researches; the new progress of basic cognitive neuroscience, especially for the function 

magnetic resonance imaging (fMRI) that was employed as the main approach in this 

thesis; an overview about translational research from brain intelligence to brain health; 

and the brain investigation from the systems science perspective. 
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Chapter 3 describes the general intelligence model, including: the problem statement 

and preliminaries surrounding systematic brain computing; the basic theories with Brain 

Informatics, web intelligence and general intelligence for cognitive neuroscience research; 

the study of the Data-Brain driven general intelligence model with evidence combination 

and fusion computing towards never-ending learning coupled with human-in-the-loop; 

and the prospective about the model as the core of a global platform supporting the whole 

systematic Brain Informatics research process and its real-world applications. 

Chapter 4 elaborates the brain activity patterns underlying the higher-order mental 

processes, such as inductive reasoning, calculation and emotion, by using the general 

intelligence model from the functional segregation perspective.  

Chapter 5 focuses on the brain mechanisms of functional integration to investigate the 

inductive reasoning process, and proposes a model to explain the crucial nodes and 

topological characteristics within the large-scale brain network.  

Chapter 6 delineates a computational model to distinguish the disease group and 

healthy controls, focusing on different-level brain patterns learned by the general 

intelligence model. This chapter also focuses on the robustness of brain patterns for 

recognition capability and convergence performance of the model, and their translational 

effect on the major depressive disorder.  

Finally, Chapter 7 concludes this thesis. It discusses contributions and some topics for 

future researches on brain intelligence, brain health and brain internet.  
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Chapter 2 

                                                                                   

 

 

Related Work 

 

Chapter 2 discusses the technology, methodology and applications on systematic brain 

computing. We begin by introducing two principles of functional organization that are 

extensively explored in the human brain studies: functional segregation and functional 

integration. Then, the translational research related results are reviewed to promote better 

practices from brain intelligence to brain and mental health. The opportunities of brain 

investigation in the big data era are discussed, especially in the face of complex content 

and context of brain data. Lastly, we review a series of brain investigation methods from 

the systems science perspective. 

 

2.1 Functional Segregation and Integration in the Brain 

The functional segregation and integration are two critical principles of organization in 

the human brain: the former emphasizes the functional specificity of discrete brain 

regions (or nodes), whereas the latter stresses the brain connectivity patterns of the 

interactions among regions or nodes [66, 67]. The study on human brain function is an 

interdisciplinary field, overlapping with disciplines such as behavioral science, cognitive 
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psychology, computational science and neuroscience. Especially, cognitive neuroscience 

as an important branch makes great contributions to the development of brain 

investigations, which combines experimental strategies and computational paradigms to 

actually examine how brain function supports mental activities [68]. 

From the two fundamental perspectives of human brain mapping and connectome, the 

broad strategies are presented to understand the functioning of brain organization. Early 

works focused on the brain lesions study for understanding of brain function, which 

provided a comparable starting point on regards to healthy and fully functioning brains 

[69, 70]. Furthermore, the development of task-dependent closed-loop approaches such 

as brain stimulation can demonstrate casual functional relations between various brain 

organizations, which has gained popularity to the brain function study [71-73]. In addition 

to the above-mentioned techniques, the advantages of modern functional neuroimaging 

techniques yield major breakthroughs for brain investigations in recent years. On the one 

hand, the functional neuroimaging techniques (such as fMRI and positron emission 

tomography) are widely used to measure the brain activity of the focal brain regions 

during behavioral or cognitive operations, by which various ROI analysis approaches are 

performed to further understand brain function they participate [74]. On the other hand, 

from the connectivity perspective, the interaction mechanisms are investigated in the 

human brain, in which a number of brain structures are linked into pathways or circuits 

such as reward circuits and limbic system [75-78]. Moreover, graph-based network 

analyses reveal meaningful information about the topological architecture of brain 

network, such as small-worldness, modular organization, and highly connected or 

centralized hubs [79-82]. 
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2.2 Basic Cognitive Neuroscience 

2.2.1 Brain Function Study 

While the research in cognitive neuroscience combines many levels of neuroscientific 

and psychological analyses, the image technology and methodology have given us 

enormously detailed information about the brain activity patterns of complex function 

[83]. However, the evidence generated by neuroimaging studies also cusses 

understandings of uncertainty, especially for brain activity patterns involved in higher 

cognitive function [84]. One fundamental problem to cognitive neuroscience is to 

interpret the complex brain structural-functional relationships, the broad discussion of 

which includes functional domains, brain structures and their interactions.  

For functional complexity, the cognitive functions are usually divided into three 

primary subsystems, including the basic cognitive system (such as perception, attention 

and memory), the higher cognitive system (such as reasoning, calculation, problem-

solving, decision-making, learning and language), and the system for social processes 

(such as emotion processing, self-representation, social communication and social 

dominance) [85]. On the one hand, the functions within each of cognitive system show 

the intra-correlated characteristic. For example, the human reasoning as a higher-order 

cognitive function can be divided into three basic forms of inference, including induction, 

deduction and abduction [86]. Furthermore, for inductive reasoning, it can also be 

involved in various sub-components, such as rule identification and extrapolation [87]. 

On the other hand, the functions across three cognitive subsystems shows the inter-

correlated characteristic. For example, the studies about influences of emotion and basic 

cognitive functions on higher-order cognition (such as reasoning and decision making) 

provide substantial evidence for interpreting the interactive effect between them [88]. 
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For structural complexity, brain regions are organized into cytoarchitectonically 

distinct areas, each cytoarchitectural configuration of which has structural properties with 

different implications for computational functions [89]. On the large scale, the brain is 

divided into several lobes from the anatomical classification perspective, such as frontal, 

parietal, occipital, temporal, insular and limbic [90]. Furthermore, the human cerebral 

cortex is subdivided into 52 cortical areas from the Brodmann’s mapping with various 

cognitive and behavioral functions [91]. For the smaller scale, the human brain 

parcellation (including criteria of architecture, function and connectivity) approaches are 

developed to create human brain atlases with the finer-grained brain regions and sub-

network architectures. 

2.2.2 Cognitive Experimental Design 

Apart from the above-mentioned complexity of brain function, in-depth consideration 

to design and application of different experimental tasks is also given to increase the 

power of study, which directly affects the response of mental processing [92]. More 

specifically, the complexity to design cognitive experiments need to consider variables 

and how they are related within a specific testable hypothesis. Additionally, 

implementations of such cognitive experiments also need to consider various subjects and 

groups, either between-subjects or within-subjects, as well as the means to measure these 

dependent and independent variables. These factors increase the difficulties of 

experimental design, at the same time, increasing the difficulties of experimental selection 

to test the hypothesis related to different cognitive functions. 

The many-to-many complexity appears not only in the interactive scenarios of brain 

function and structure, but also in the interactive scenarios of brain functions and 

cognitive experiments. Firstly, the experimental tasks with different paradigms can be 
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used to investigate a specific cognitive function. For example, the tower of Hanoi task, 

the sequence complement task and sudoku puzzle task are usually used to study the 

reasoning mechanism. Secondly, one experimental strategy may be considered to test 

different cognitive functions from different perspectives. For example, from one view, 

some investigators used the facial emotions task to study the perceptual skills. However, 

from another view, some investigators also used the similar experimental task to judge 

the social ability. Thirdly, while some of experiments seem to vary significantly, they 

induce a similar brain response. Moreover, a dual-task experiment can obviously induce 

multiple mental processes [93]. The complex interactions have motivated us to develop 

solutions that can efficiently organize these experimental details and their relationships, 

such as the cognitive paradigm ontology (CogPO) and the cognitive atlas. In CogPO, the 

experimental paradigms are categorized by various concepts about the stimulus presented 

to the subjects, the requested instructions, and the returned response [94]. These concepts 

are connected by a set of relationships such as “has stimulus”, “has contrast”, “includes 

condition” and “related to”. In the cognitive atlas, a knowledge base was developed to 

collect and manage terminology about experimental tasks and mental processes [95]. 

2.2.3 Brain Data Science 

The field of functional brain data has substantially advanced as a big data science in 

the past decade, thanks to the development of open science [96-99]. Handling large-scale 

brain data faces many challenges, especially in the transmission, storage, and 

dissemination of the functional neuroimaging with complex experimental characteristics 

as mentioned above [100]. Moreover, how to quickly extract a or multiple satisfactory 

data from the data ocean constructed by tens of thousands of brain data to meet the needs 

of systematic brain computing has become urgent in the brain big data era. 
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Currently, numerous strategies have been developed to regulate the identification, 

representation, interpretation, operation and integration of various data-typing brain data. 

For open and FAIR neuroscience [101], on the one hand, some common principles are 

developed towards the goal of best practices, such as the DICOM and NIfTI data 

standards [102, 103], BIDS (Brain Imaging Data Structure) [43] for organizing 

neuroimaging and behavioral data, and MIDS (Medical Imaging Data Structure) extended 

to multiple modalities and anatomical regions. On the other hand, some databasing 

approaches, ontologies and data models are constructed to improve usability and 

readability of brain data, such as BrainMap [33], NIDM (Neuroimaging Data Model) 

[104], NEMO (Neural ElectroMagnetic Ontology) [105], NeuroML [106] and 

Computational Neuroscience Ontology [107]. However, the current strategies are limited 

to data and analysis provenances, as a planner aimed at the decision-making process of 

data integration and reuse, which ignore the direct impact of defined factors on the brain 

computing results. As such, the mental processes, experimental design and data 

acquisition details increase the complexity, not only for data archiving, management and 

sharing, but also for the fusion computing of resources at various granularities of brain 

data, information and knowledge (such as the raw data, parameter mapping and localized 

coordinates in the brain). For this, it is becoming an urgent need to enhance data 

integration and brain computing simultaneously.  

2.2.4 Brain Computing Methods 

By integrating artificial intelligence and computational science, various brain 

computing methods are developed to decode complex brain functions. Here, we review 

representative approaches that are already having profound effects and will continue to 
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play a critical role in brain science, towards the goals of uncovering two principles of 

functional organization. 

Localization exploration of brain functions is one of the most fundamental works in 

cognitive neuroscience, which is investigated to determine the location of brain activity 

or to produce functional/parametric brain mapping by correlational methods (such as ROI 

analysis) and connectional methods (such as the role of part of brain region in the whole 

brain) [84, 108]. In recent years, benefit from the advantages of functional neuroimaging 

techniques, many methods are developed to decode the complex brain function, such as 

statistical analysis, representational analyses and computational methods [2]. For 

example, the functional brain images are analyzed by the standard univariate approach 

such as statistical parametric mapping (SPM) to examine differences of brain activity 

recorded during functional neuroimaging experiments in regions of interest (ROIs) [109, 

110]. Under the SPM framework, the statistical effect of each voxel is observed by 

combining with the general linear model (GLM) [111]. Apart from the statistic-based 

univariate analysis approach, the multivariate pattern analysis (MVPA) uses machine 

learning methods to examine the multidimensional relations between brain activity 

patterns, such as classifier-based and pattern-similarity MVPA [112]. As another approach 

that directly decodes the relations between psychological contents and brain function, 

representational similarity analysis (RSA) is introduced [113]. Furthermore, model-based 

approaches, such as reinforcement learning, play a critical role in our understanding of 

brain function [114]. 

In contrast to such local specialization, brain connectivity refers to the integration 

characteristics among distinct units, which is measured by anatomical links (structural 

connectivity), statistical dependencies (functional connectivity) or causal interactions 
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(effective connectivity) [115, 116]. For example, the structural connectivity patterns are 

determined by directly observing links such as synapses, circuits or fiber pathways [117, 

118]. The statistical dependencies between brain regions or nodes can be measured by 

cross-correlation analysis, coherence analysis or mutual information from the functional 

connectivity perspective [119]. The casual interactions can be investigated by granger 

causality (GC), dynamic causal model (DCM) and Bayesian network (BN) from the 

effective connectivity perspective [120]. Furthermore, complex network metrics are 

examined by regional nodal parameters (such as centrality, betweenness and participant 

coefficient) and global network parameters (such as clustering coefficient, local 

efficiency and global efficiency) [121, 122]. More specifically, there are many functional 

networks to be recognized in the human brain, which act with various functional 

characteristics, such as the primary sensory and motor networks, the language network, 

the default network (DN), the salience network (SN), the attention networks (ANs), the 

control networks (CNs) [123-125]. 

2.3 Translational Research in Cognitive Neuroscience 

As the control center of human body, the brain plays a key role in perception and 

regulation of the mental and physical health status. Especially the development of 

translational research in brain science, the shift from basic neuroscience discoveries to 

the public health applications has advanced progress towards precision medicine [131] 

and the P4 medicine [65]. For example, the basic brain research has linked the presence 

of brain abnormalities to a variety of symptoms and signs, including major depressive 

disorder (MDD) [126, 127], mild cognitive impairment [128], dementia/Alzheimer’s 

disease [129], epilepsy [130], and so forth. 
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On the one hand, many studies have demonstrated the brain functional abnormalities 

in regions is associated with the symptoms of patients with psychiatric disorders [132]. 

For example, some studies showed the abnormal regions in the amygdala, insula, dorsal 

anterior cingulate cortex, dorsal striatum and dorsolateral prefrontal cortex in individuals 

with major depressive disorder than in healthy subjects [133]. The bipolar disorder shows 

the abnormal activation in the bilateral inferior frontal gyrus, bilateral insula extending 

into the striatum, right superior frontal gyrus (SFG), superior temporal gyrus (STG), 

bilateral precuneus, left cerebellum and left anterior cingulate cortex (ACC) [134]. 

Schizophrenia shows the abnormal information processing in the prefrontal cortex, 

amygdala and hippocampal [135, 136]. On the other hand, the symptoms of mental 

disorders are also associated with the abnormal characteristics on the brain functional 

connectivity [51]. For example, network dysfunction underlies core cognitive and 

affective abnormalities in depression [137]. The default mode network and medial 

prefrontal cortex connectivity abnormalities are found in bipolar disorder and 

schizophrenia [138-140]. 

Currently, the integration of computational science and neuroimaging techniques has 

surpassed expectations in the field of the brain-related translational research, which has 

been widely applied to various clinical practices [63, 141]. For example, prediction and 

treatment of mental disorders [142], diagnosis and assessment of neurological diseases 

[143], brain tumor detection [144], as well as assessment for epilepsy surgery [130]. More 

specifically, computational approaches to psychiatry could be divided into two views: one 

is the data-driven approach (such as machine learning and standard statistical methods), 

and another is the theory-driven approach (such as biophysically realistic natural network 

models, algorithmic reinforcement learning models and Bayesian models) [145, 146]. 
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The machine learning and pattern recognition methods has shown the potential to 

transform the role of neuroimaging in clinical applications [52, 129, 147-149]. 

2.4 Systems 

Systems science is an interdisciplinary field concerned with understanding systems– 

from simple to complex – in nature, society and cognition, which brings together 

techniques and methods from ontology, similarity comparison and so forth [150]. As its 

one interdisciplinary instance, systems biology develops the integrative strategies to 

investigate complex interactions within biological systems, using a holistic approach 

(holism instead of the more traditional reductionism) to biological research [151]. With 

the development of cognitive neuroscience, the integration of brain science and systems 

science has become more frequent, evolving into systems neuroscience as a subdiscipline 

of neuroscience and systems biology [113]. One of the significant domains which benefit 

from systems science is brain informatics, complying with the “Top-Down” principle to 

decode complex brain functions from perception to thinking [152, 153]. From the 

systematic view, brain computing changes from single to fusion, chasing the balance of 

multifaceted factors about cognitive function, experimental design, data state and 

analytical details. Furthermore, general theory plays a key role in systems research, which 

is about developing broadly applicable concepts and principles [154]. Combining with 

general theory, a smart health application means that a system and/or model learns 

systematic thinking, knowing itself completely, what happened (facts), why it happened 

(causes) and how to accomplish (actions) [155]. More specifically, it can realize 

transformation across multiple scenarios, relying on translational study. 

On the consistency of the traditional brain investigation approach, systems 

neuroscience focuses on the interrelated factors covered by cognitive functions, 
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experimental designs, data collections and analysis strategies. More specifically, under 

the process of understanding human thinking, the thinking-centric higher cognitive 

functions and relevant basic functions need to be explored systematically. Furthermore, 

such a systematic investigation strategy guides the systematic design of multiple 

cognitive experiments, the systematic collection and management of multiple brain data, 

and the systematic analysis and simulation for an in-depth understanding of the brain 

information-processing mechanisms, as well as the intra- and inter-element relations 

within and among themselves (see Figure 2.1 and the diagrammatic representation for 

systems neuroscience). 
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Figure 2.1: A diagrammatic representation of goals and approaches of systematic brain 

investigation. (1) the outer spiral with dotted arrows depicts some factors within a brain 

investigation process, which involve detailed parameters during the whole life cycle of brain data 

including functional domains, experimental details, data state, algorithmic selection and 

interpreted views, and (2) the inner circle with solid arrows shows iterative process of brain 

investigation from a systematic perspective, which includes the following: systematic 

investigation of brain science problems, systematic design of cognitive experiments, systematic 

brain data collection and integration, and systematic brain data analysis and simulation. For a goal 

hypothesis, each iteration refines the brain computing results through a combination of practice 

from the previous and current loops, and deepens our understanding of the brain activity patterns. 

Ultimately, such models may be used in a predictive mode towards human health-care and clinical 

practices. 

 

Given the most common brain research process, an initial hypothesis to a brain science 

problem must first be given. Then, a specific cognitive experiment is designed to collect 

the limited brain data. Finally, we may try the strict methods to test the hypothesis we 

mentioned earlier. Obviously, this strategy is essential to understand the one-to-one 

relationship between brain structure and cognitive function from a single perspective. But 

when we want to consider the many-to-many interactions among several cognitive 

functions, this strategy is not enough. For example, on the one hand, as the largest of the 
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lobes in human brain, the frontal lobe is further divided in various functional areas, 

including the motor cortex, the prefrontal cortex and Broca’s area. The frontal lobe plays 

a key role in a broad scope of cognitive functions from movement to intelligence, such as 

memory, reasoning, decision-making, problem-solving, language and emotion regulation. 

On the other hand, as a basic component to human intelligence, human reasoning reflects 

different ways of thinking logically, including inductive, deductive and abductive 

approaches. The inductive reasoning is further divided to various cognitive sub-

components, such as rule identification and application, which are related to other 

cognitive functions, such as memory and calculation. Some studies suggest that the 

inductive reasoning is not only related to the prefrontal cortex, but also precuneus, inferior 

parietal lobule, superior occipital gyrus and so forth. We can find that it is difficult to clear 

the complex brain structure-function relationships, which is still an open question in the 

field of brain science. Hence, it is becoming an urgent need to change our views from the 

independent brain investigation to systems. 

2.5 Conclusion 

In this chapter, we cover the related works on brain investigation with translational 

research in the big data era. We review two research views of the functional segregation 

and integration that are two important organization principles in the brain. The basic 

cognitive neuroscience is introduced around the brain function study, cognitive 

experimental design, big data science and brain computing methods. We then review the 

neuroscience-centric translational research and the necessary of systems research for 

brain science.  
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Chapter 3 

                                                                                   

 

 

Data-Brain Driven General Intelligence Model 

(GIM) 

 

In this chapter, the Data-Brain driven general intelligence model and its multi-aspect 

applications are introduced. This model is designed and constructed by combining several 

components surrounding the represent knowledge, inference engine, brain computing, 

never-ending learning, human-in-the-loop and an interpreter for uncertainty. The model, 

as a thinking machine, performs systematic cognitive experimental design and 

implementation, and systematic brain big data analytics and fusion computing from multi-

aspect task-state functional neuroimaging sources. This chapter was prepared for 

understanding (1) what drive the emergence of the general intelligence model, (2) how to 

construct such a Data-Brain driven general intelligence model, and (3) what is the 

capability of the general intelligence model for understanding brain intelligence and brain 

health.  
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3.1 Problem Statement 

3.1.1 Complex Brain Computing 

The human brain often casually described as the most complex system (with functional, 

structural and dynamic characteristics) in the universe, for which different brain 

computing methods are developed to uncover the biological characteristics and 

information-processing mechanisms [156-159]. Typical investigation processes include 

formulating goal hypotheses, designing and carrying out cognitive experiments, 

collecting and analyzing brain data, and generating scientific reports with various findings. 

During such a process, numerous factors will be considered to solve a particular brain 

science problem by carefully selecting experimental paradigms, measured techniques and 

analytical methods to reduce the impact of intervening factors and increase confidence 

level of hypothesis testing. As a result, such carefully thinking and practical behaviors 

contribute to the urgency of implementing brain computing with systematic fusion. 

Meanwhile, such many-to-many uncertainty mapping on brain structure-function 

relationships increases the difficulty in interpretations of brain functions. 

As an example, understanding human thinking itself is the key step towards human-

level AI, for which purpose the thinking-centric higher cognitive functions and relevant 

basic cognitive functions need to be explored systematically. That is to consider multiple 

cognitive functions, simultaneously or continuously, for an in-depth understanding of 

brain information-processing mechanisms and their biological characteristics, as well as 

the intra- and inter-construct relations within and among themselves. Such a systematic 

consideration drives the systematic design of multiple cognitive experiments, the 

systematic collection and management of multi-angle brain data, and the systematic 

analysis and simulation of multi-source brain data [152, 153, 160-162]. This example 
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inspires us that 1) multi-aspect factors should be coupled with each other, and need to be 

treated by systematic consideration. If they are separated or only a particular aspect is 

observed, it is difficult to capture the brain specificity, and give rational interpretation and 

evaluation; 2) models for fusing multi-sourcing of data, information and knowledge 

should cater for the joint investigation among cognition, emotion and disease from a 

systematic perspective. Taken together, the practice goal is achieved through continuous 

brain computing and learning. 

3.1.2 Systematic Behavioral Modeling 

An important idea is to build a machine through modeling of human thinking and 

behaviors, promoting the transparency and interpretability of brain computing results. 

Hence, the behaviors of investigators and the operations of machines can be 

interchangeable in a whole cycle of brain investigation, which constitute various 

strategies to achieve his/her investigation goals. One of the most core challenges is how 

to make a machine present a brain data with the complex context. In this case, 

characteristics (the complex context from functional domain, experimental design, data 

state and analytical detail) of a brain data need to be marked by a descriptor, and make it 

traceable in data ocean constructed by the interconnected and interrelated resources (see 

Figure 3.1). The reason is: the confounding of cognitive processes produces the urgent 

need to a standardized definition for cognitive processes and their relationships; the 

ambiguous terminology makes it difficult to test the utility of these resources for large-

scale annotation of data, search and query, and knowledge discovery and integration; gaps 

and conflicts make it difficult to combine brain resources for interpretations of multi-

aspect data [95, 163]. Just like human beings, a machine also needs to recognize the 

complex context of various brain data to response to requests rightly. Hence, an identifier  
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Figure 3.1: Systematic behavioral modeling interacts with brain big data towards never-ending 

learning. 

 

is needed to systematically demonstrate the complex data for meeting the requirements 

of storing, computing, analyzing and interpreting. 

Furthermore, the complexity of brain science problem makes it impossible to uncover 

the nature of cognitive processes, observed from only one angle such as a single brain 

data obtained by a single experimental task and decoded by a single analytical strategy. 

Such like human beings to address a brain science problem by performing many different 

types of experiments from diverse hypotheses for a long time, even throughout one’s 

whole life, a machine needs to acquire multiple functions or data models from multiple 

datasets in responses to a user request continuously and permanently. The core challenge 

is how to identify the goal-matching resources obtained by different experiments for a 

machine to address a specific brain science problem, which is also involved with 

behavioral modeling (see Figure 3.1). In particular, the thinking behaviors present the 

complex relations of brain data, corresponding to the behaviors of the inner system. 

However, the practical behaviors present the sampling of complex brain data in the big 

data era, corresponding to the behaviors of the outer system. Thereby, an intelligence 
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model is authorized to intelligently select different types of brain resources, and 

systematically fuse them for providing the thinking-support investigation. 

3.2 Basic Theories  

3.2.1 Brain Informatics 

Brain Informatics (BI) is a rapidly evolving interdisciplinary and multidisciplinary 

research field that focuses on studying the mechanisms underlying the human information 

processing system (HIPS) with big data [152, 153]. It investigates the brain information 

processing mechanisms with respect to the essential functions of human brain, ranging 

from perception to thinking, such as perception, attention, memory, reasoning, calculation, 

decision-making, problem-solving, language, learning, creativity, planning and discovery. 

Brain Informatics has opened up an avenue for investigating the complex brain science 

problems systematically, integratively and intelligently, by leveraging the benefits of 

cognitive neuroscience, artificial intelligence, and information and communication 

technology in the big data era (see Figure 3.2). 

The core issues in the Brain Informatics methodology are systematic studies from the 

following four aspects: systematic investigations of complex brain science problems, 

systematic design of cognitive experiments, systematic brain data management, and 

systematic brain data analysis and simulation [161]. Such a methodology guides the 

design, development and operation of the intelligent model for systematic brain 

investigations. One of the core strategies in Brain Informatics is to model the many-to-

many structure-function relationships of the brain at the logic level, depending on a 

directed labeled graph such as knowledge graph. Directed by the Brain Informatics 

methodology, the systematic brain investigations can be executed in multiple directions 

of cognition, emotion and disease, respectively, as well as their joint investigations from 
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Figure 3.2: The Brain Informatics methodology. Brain Informatics is an interdisciplinary and 

multidisciplinary research field with joint efforts from neuroscience, cognitive science, medicine 

and life sciences, data science, artificial intelligence, neuroimaging technologies, and information 

and communication technologies (ICT). It provides five research tracks with respect to: cognitive 

and computational foundations of brain science; human information processing systems; brain 

big data analytics, curation and management; informatics paradigms for brain and mental health 

research; and brain-machine intelligence and brain-inspired computing, for investigating big brain 

in the era of big data. 

 

the basic cognitive neuroscience to translational research. Another core strategy in Brain 

Informatics is the top-down priority principle, which focuses on the systematic study 

about the full-scale data of human brain in vivo with cognitive tasks for seeking a 

complete comprehension of human intelligence and health. Following this principle, the 

processes of decoding brain are specified to map investigating behaviors from macro- and 

meso- scales to micro-scale. For instance, we can first observe the macro-scale 

characteristics for a full brain function by testing behavioral experiments. Then, we can 

observe the meso-scale characteristics in the local brain and functional connectivity, 

depending on a series of functional neuroimaging techniques. Next, we can observe the 
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micro-scale characteristics for a type of neuron within a brain region of interest obtained 

at meso-scale. Finally, such investigated results from the macro-meso-micro brain are 

integrated to an evidential chain to promote our systematic understanding and multi-

aspect interpretations of the biological characteristics and information-processing 

mechanisms. 

The Brain Informatics highlights the systematic brain computing, contributing to the 

need of the general intelligence research. To develop the general intelligence-oriented 

problem-solving and decision-making as well as knowledge discovery systems with 

human-level capabilities, we need to better understand how human beings complete 

adaptive, distributed problem solving and reasoning. As a result, the linkages between the 

classical AI study and the biological brain study for problem-solving and reasoning need 

to be defined and elaborated. It puts forward the higher requirements for advanced 

computing techniques in the connected world. 

3.2.1 Web Intelligence 

Web Intelligence (WI) is now a cutting-edge research field on exploring fundamental 

roles and practical impacts of artificial intelligence and advanced information technology 

(IT) on the Web and the next generation of Web-empowered wisdom services [164, 165]. 

It aims to achieve a multidisciplinary balance among research advances in theories, 

methods and applications usually associated with collective intelligence, data science, 

human-centric computing, knowledge management and network sciences. With an eye on 

the future, Web Intelligence begins a new chapter around the theme of 

“Web Intelligence = AI in the Connected World”. 

Here, we use the term “AI” in the widest possible sense, including the works related to 

statics, machine learning and AI research that aims to build intelligent machines [166]. 
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The core of this process is to both deepen the understanding of computational, logical, 

cognitive, physical and social foundations of the future human-level AI society, and 

enables the development and application of intelligent technologies. More specifically, 

these topics could be tracked to investigate how intelligence is impacting the Web of 

People, the Web of Data, the Web of Things, the Web of Trust and the Web of Agents in 

this era of the rapid development of information and communication technologies.  

The social interactions, cyber correlations, physical perceptions and thinking 

communications can be intertwined in the ubiquitous things’ interconnections, which 

realize a perfect integration of the social-cyber-physical-thinking spaces. Connections 

with variable effect characteristics, including virtual and real connections, are the most 

common forms of dynamic structure in these spaces. In this context, brain computing in 

the connected world is not only supported by the interactions and integration of data, 

information and knowledge in a general intelligence model, but also the interconnections 

related to the Web of People, the Web of Data, the Web of Things, the Web of Agents, the 

Web of Trust and the Web of Security with respect to Web Intelligence. 

• The Web of Data (WoD) 

The WoD focuses on the organization, management, allocation and computation of 

loose resources and system platforms in the cyber space, in which different data 

objects will be distributed and centralized through the existence of links. For this, the 

knowledge graph and graph database techniques could be integrated into the general 

intelligence model, which is expected to achieve a more natural data ecosystem by 

using the native graph storage and processing modes. Changing the type of data 

transmission, from data containing multiple messages to the information extracted 

from multiple data, will greatly improve the efficiency of data communication and 
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dissemination in the connected world. Hence, the loose data can be processed at the 

terminal. The combination mode of edge computing and distributed computing is 

considered in the general intelligence model, and technical and service supports are 

provided through the cloud platform. On the one hand, multi-source heterogeneous 

data bring huge challenges to the integration and fusion of resources, such as the 

polycentricity problem widely existing in the field of neuroscience. Through edge 

computing technology, the massively heterogeneous data that previously tended to 

be processed centrally is now being processed by edge nodes for initial processing to 

make original data more standardized. These isomorphic information and metadata 

during the entire life cycle of data are transferred and shared, which will greatly 

improve application efficiency. On the other hand, the situation of the massive data 

processing is inevitable in the era of brain big data, which cannot be solved by the 

computing resources of an organization or a group. Hence, the distributed computing 

technology is applied to a general intelligence model to solve the large-scale brain 

computing problems by collaboratively managing increasing resources. In addition, 

a general intelligence model may provide the hierarchical and personalized data 

computing services through the virtualization technology, which can quickly meet 

the needs of different tasks. 

• The Web of Things (WoT) 

Physical objects of real world are established into the interconnected mode via the 

various communication technologies and remote collaboration means, which form 

the WoT in the cyber-physical space. In the WoT, all objects can be perceived and 

controlled by sensors and actuators, in which they are connected by the Web/Internet 

of Things technology to achieve dynamic interaction and autonomous management. 
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Its core research challenge brought by the connected world is to realize the organic 

amalgamation and harmonious symbiosis among ubiquitous objects, i.e., to make 

everything smarter, intelligent, and smooth communication. To achieve the goal, the 

Wisdom Web of Things (W2T) has been developed as a core of the WoT with big 

data in the social-cyber-physical spaces. For instance, the physical objects 

themselves not only can adaptively process and analyze data, but also can sense the 

status of other sensors and respond autonomously to the surrounding environment. 

The actuators are not only the performers who send and receive action instructions, 

but also have the ability to organize and manage autonomously by themselves. For 

instance, these actuators can interact dynamically through adaptive modes and 

collaborate to accomplish specific tasks and goals in the complex environments. 

Throughout the W2T, a general intelligence model may act as the overall control 

center to provide the intelligent solutions and global services in the connected world. 

It can not only receive the global-scale information transmitted by the Web 

technology to perceive the real-time status of physical objects, but also timely 

analyze the dynamic changes to generate a set of control instructions that can be 

interpreted by physical objects. In addition, a general intelligence model also can be 

personalized as a local node to participate in the construction and operation of the 

local services. Such interactions of models from the global and local sides build the 

collective learning and mutual support mechanisms of physical objects in the WoT. 

Some main communication and networking technologies are applied to the 

interactive mode between a general intelligence and the cyber-physical environment, 

such as virtual reality techniques, 5G, radio frequency identification, Bluetooth, 

ZigBee, Wi-Fi, global positioning system and radar sensor network. 
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• The Web of Agents (WoA) 

The characteristics and mechanisms of biology in the thinking space, including 

behaviors and activities, are integrated into the connected world to form the new 

generation of network modes called WoA. The thinking agents in the WoA are not 

equivalent to the virtualization of entities in the cyberspace. The latter mainly rely on 

virtual and digital signals for information exchange and dissemination. More 

importantly, the thinking and organism themselves are the important component of 

an agent in the current network, which directly participates in the dynamic changes 

of the network characteristics through the physiological signals and functional 

mechanisms. For instance, the social brain communication is an emerging direction 

formed by the combination of the ICT and brain-machine interface technologies. It 

aims to achieve synergy among individuals through the direct brain-to-brain 

connections, thereby cooperating to accomplish goals that one cannot achieve. For 

this, a general interface is considered to build the bridge between organisms and 

intelligent agents through the Web technology, which is the driver and engine of the 

WoA development. In addition, the human information-processing mechanisms 

decoded by the web agents are developed to provide the brain-like computing 

methods, forming the core element of an intelligent agent that performs like human 

beings. Meanwhile, human thinking directly participants in the learning of agents, 

connecting the biological end with other spaces to realize the human-agent 

interaction within human-in-the-loop. 

• The Web of Trust (WoTr) 

Trust plays a significant role in the connected world to maintain the stable and 

sustainable relations, as well as dynamic balance among humans, machines and 
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things. Authenticity is the cornerstone of trust, which is the premise for ensuring 

reasonable decision-making, publicizing authoritative information and so forth. 

Hence, the authenticity of data, information and knowledge requires special attention 

to provide the trusted services. The method and technical discussions surrounding it 

are usually classified into two groups from the perspectives of acquisition and 

application. In particular, the various combinations of these processes (including true 

acquisition with true application, true acquisition with false application, false 

acquisition with true application, and false acquisition with false application, 

respectively) can produce different results and effects. Obviously, obtaining real 

resources with the right methods and applying them to suitable scenarios are the 

ultimate goals, which are most likely to achieve the results we expect. In this case, 

the streaming data derived from real states of an entity under dynamic environments 

need to be accurately captured through progressive software and hardware techniques 

in real time. For instance, the ultra-high-field technology is applied to brain 

investigation for more realistically restoring the time-space response and more 

effectively capturing the functional specificity. The compression tools are developed 

to address the high-throughput data problem for future undistorted reconstruction. 

Furthermore, the batch data derived from historical states of various entities need to 

be unmistakably detected, which is the fake detection issue. For instance, in the 

social-cyber space, the authenticity of social elements in the different directions is 

concerned, such as filtering of spam email, detection of fake social media behaviors, 

detection of fake online reviews and news, and detection of fake software and 

websites. Moreover, in the social-physical space, various biometrics are applied to 

detect hiding true emotion and determine liveness from the iris, fingerprint, face, eye, 
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brain and so forth. In view of the above observations, a trustworthy intelligent model 

in the WoTr is not only the generator of the open data, information and knowledge 

that must be authentic and convincing, but also the detector of fake resources that 

must be faced in the social-cyber-physical spaces. 

• The Web of Security (WoS) 

Security is another issue of broader concern in the connected world, including but 

not being limited to personal data acquisition and analysis, which is closely related 

to privacy. An important view is to ensure that the resources generated by people, 

computers, sensors and agents within the social-cyber-physical spaces have their 

appropriate locations through the constraint of laws and regulations, followed by 

realizing the secure communication among them while taking individual privacy into 

consideration. To achieve such the WoS, a range of technologies, methods, strategies, 

mechanisms and regulations needs to be merged into the general intelligence model. 

For instance, the decentralized blockchain technology, which provides anonymity 

and data integrity without any third-party control, is considered to ensure the security 

of data management. Another way is to extend data storage, processing, computing 

and application services to the edge of the network, especially for end users, such as 

the fog computing and edge computing modes. Besides, for any entity in the social-

cyber-physical spaces, the ultimate way of protecting the individual privacy and data 

security is not to open and share their data. In our increasingly interconnected world, 

however, it is obviously neither desirable nor realistic to confine individuals in 

isolated nodes, and not allow them to interact with each other. In this case, the 

federated learning, first proposed by Google in 2016, provides a solution that allows 

us to participate in the Internet feast more efficiently and effectively while 



3.2 Basic Theories 46 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

maximizing the protection of the individual data and privacy. In the federated 

learning framework, each device in the network is used as a computing node 

performing training tasks on its local data instead of logging it to a data center for 

training. The privacy-preserving federated learning method is integrated into the 

developing process of an intelligent model, which is expected to provide more 

security solutions in the WoS. 

In the face of complex brain science problems, Web Intelligence provides the technical 

support for such systematic brain computing in the connected world. Different from the 

conventional expert-driven approach, a systematic brain study integrates a powerful brain 

data center and various IT techniques within a general intelligence system. A brain big 

data center, as the extensional representation of human information-processing system, 

systematically organizes multi-level brain data to support the whole systematic brain 

research process. The Web Intelligence research, such as wisdom web of things [153, 167], 

provides a novel vision for computing and intelligence towards systematic brain research. 

A general intelligence model on the wisdom Web is developed to enable high-speed, 

large-scale, distributed computing, and new ways towards the integrations of data, 

information and knowledge. The W2T extends the wisdom Web in the connected world 

(Internet/Web of Everything), by which each thing in the social-cyber-physical spaces can 

be aware of both itself and others to provide right service, for right object, at the right 

time, and in the right context. 

3.2.2 General Intelligence 

The overarching problem in artificial intelligence is that we do not understand the 

intelligence process well enough to enable the development of the human-level 

computational models [61, 168]. Much work has been done in artificial intelligence over 
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the years at lower levels, particularly, deep learning that has gained an unprecedented 

impact across research and industry communities [169, 170]. As a result, machine 

learning tools have been widely adopted to help computing and decision-making in 

various real-world scenarios. However, a big part of what has been missing involves the 

high level, abstract, general nature of intelligence. The gap needs to be addressed by 

developing a model with general intelligence. 

Brain computing is widely studied to provide inspiration and support for studies of 

general intelligence. It is the multidisciplinary fields from cognitive neuroscience, big 

data, computational science to medicine and life sciences [171-173]. From the 

perspectives of brain intelligence and health, several typical directions are explained as 

follows: 

• Firstly, as the biological basis of intelligent behavior, the human brain has long served 

as a source of inspiration for artificial intelligence and computational science [174]. 

For instance, the biological characteristics of the brain are studied to develop new 

algorithms [175, 176], neural inspiration models [177, 178] and neuromorphic 

computing [179, 180], as well as verify theories [181]; and the processing 

mechanisms of the brain are designed in chips to make computing more efficient and 

effective [182, 183]. Additionally, how to make intelligent agents perform like human 

beings with cognitive capabilities and social expectations is regarded as a key step 

on the road of reaching ultimate artificial intelligence [184, 185]. For instance, many 

advances have come from the area of explainable artificial intelligence to provide 

more transparency to their models [186-188]. 

• Secondly, as the control center of human body, human brain plays a key role in 

perception and regulation of the mental, physiological and physical health status. 
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Research has linked the presence of brain abnormalities to a variety of clinical 

outcomes, including cognitive impairment [189], dementia [129], psychiatric 

disorders [145], neurological disorders [190], and so forth. Owing to individual 

differences, the computational method for human brain is studied to realize precision 

medicine [131] and the P4 (Predictive, Preventative, Personalized and Participatory) 

medicine [191]. For instance, computational neuroscience has been widely applied 

to various clinical practices, such as prediction and treatment of mental illness [142], 

diagnosis and assessment of neurological diseases [143], brain tumor detection [144], 

as well as assessment for epilepsy surgery [130]. 

With the development of brain big data and open science, brain computing is rapidly 

moving towards using systematic fusion from perspectives of multi-aspect, multi-domain 

and collective efforts. This thesis is centered around advancing the frontier of both 

artificial intelligence and brain science in systematic learning and fusion computing. By 

meeting Brain Informatics and Web Intelligence, the novel machines can be built to 

perform brain computing approaches, learning and thinking like human with general 

intelligence. As shown in Figure 3.3, we believe a general intelligence model should 

include the represent knowledge and an inference engine, together with various learning 

strategies to realize decision-making and interact with the user in the continuous loops. 

In each iteration, the model receives input from the user and maps the queries to its 

internal algebraic representations by using the represent knowledge. The inference engine 

then carries out rule-based inference in experimental and analytical factors to predict user 

behaviors, and choose matched actions to execute evidential learning, fusion computing 

and decision-making. Thus, a goal of this thesis is to build a unified framework that 

provides a common thinking space for never-ending learning and inferring, together with 
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Figure 3.3: A model of general intelligence, which consist of the correlative knowledge, inference 

engine, learning paradigms and decision-making. The correlative knowledge serves as the basis 

of actions within model to represent human behavior, mapping from real-world goals to their 

internal representations. The inference engine is powered by rule-based reasoning that guide the 

model to walk in the huge graph to select, integrate and compute resources. 

 

human-in-the-loop. By developing multi-factorial representations that generalize across 

scenarios, it can be adapted to help address the brain science problem around human brain 

mapping, human brain connectome and translational research. 

3.3 Preliminaries 

3.3.1 The Conceptual Data-Brain 

Directed by the systematic Brain Informatics methodology stated in Section 3.2.1, a 

conceptual model is proposed, namely Data-Brain, to present and model the whole 

process of brain investigations. The conceptual Data-Brain provides a thinking space to 

serve as systematic brain computing, which is constructed as the interconnected four 

dimensions in knowledge graphs, including function dimension, experiment dimension, 

data dimension and analysis dimension:  
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• The function dimension provides a conceptual model of mental processes for 

supporting systematic brain investigations with structural constraints of cognitive 

elements. More specifically, it focuses on the conceptual modeling of the constituent 

elements on cognition, emotion and disease, as well as the intra- and inter-element 

relations within and among themselves. For instance, in order to understand human 

intelligence, the thinking-related cognitive functions need to be explored and 

explained systematically. The conceptual modeling of such cognitive functions is 

often divided into three primary systems, including the basic cognitive systems (such 

as perception, attention and memory), the higher cognitive systems (such as 

reasoning, calculation, problem-solving, decision-making, learning and language), 

and the systems for social processes (such as self-representation, emotion processing, 

social communication and social dominance) [192]. Moreover, a human reasoning-

oriented mental process, as part of the higher cognitive system, can be further divided 

into three various aspects of reasoning (including deduction, induction and 

abduction). Hence, the function dimension guides the systematic organization of 

functional domain, at the same time, impacting the subsequent processes within the 

systematic experimental design, the systematic data sampling, and the systematic 

analysis and simulation of brain big data for understanding brain patterns and 

information-processing mechanisms in depth. 

• The experiment dimension provides a conceptual model of experimental design for 

supporting systematic testing of research purposes that are also involved in the 

function dimension. As a conceptual model of the systematic experiment design 

during various periods of implementing experiments, the experiment dimension 

needs to represent the different factors of cognitive experiments, including 
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experimental paradigms, task types, measuring instruments, subjects and so on. 

Meanwhile, the conceptual relations among these experimental tasks and task-related 

parameters are defined rationally. For instance, in order to investigate inductive 

reasoning related information-processing (neuro) mechanisms, multiple tasks related 

to various explicit stimuli of numerical, figural and sentential materials may be 

considered comprehensively to test a cognitive function from multiple perspectives. 

We also can test and retest the same type of experimental tasks such as the numerical 

serial complement task to increase the reliability. Additionally, one task also can be 

used to test different cognitive hypotheses, such as the sudoku task used to test 

reasoning and problem solving. 

• The data dimension provides a conceptual model of brain data for supporting multi-

source systematic integrations of brain big data as the extensional representation of 

the human information-processing system. As a conceptual model of the brain data, 

the data dimension needs to represent the different aspects of heterogeneous data with 

multi-modal and multi-scale characteristics. For instance, increasingly neuroimaging 

techniques used to various brain research processes have accelerated the emergence 

of more data types and structures. Because of the differences of data organization 

strategy in the connected world, it is difficult to achieve simple hard fusion for the 

investigating requirements of complex brain science problems. For these reasons, the 

data dimension covers various information granularities and data roles such as 

original data, processed data and reorganized data from the internal and external 

sources. Here, the internal source refers to the local resources that are stored on local 

servers, usually obtained by our own research team, and the external source is 

organized from the global open sources (such as published results and sharing 
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datasets) through data cooperation. These multi-source data can be mapped to the 

same semantic space in the way of soft fusion for the dissemination and utilization 

of brain big data. 

• The analysis dimension provides a conceptual model of analytical methods for 

supporting multi-aspect systematic analyses of brain data that are organized in the 

data dimension. As a conceptual model of the systematic analysis and simulation, 

analysis dimension needs to represent the different aspects of analytical methods and 

their parameters, such as analysis tasks, analysis pipelines, analysis tools and 

algorithms. For instance, in a neuroimaging-oriented analysis task, brain images 

could go through preprocessed and postprocessed pipelines, during which they are 

processed by using a specific programming language under a specific algorithmic 

framework. During postprocessed process, the comparison and integration of 

multiple analysis methods may be considered, such as ensemble learning [193], 

multi-view learning [194] and comparative analysis [195, 196]. The core issue is how 

to combine a group of suitable methods for the right data object at the right context. 

A systematic methodology can guide the fusion computing of analytical results to 

give multiple interpretations from various methods and analytical aspects. Following 

these requirements, the concepts and their relations of analysis methods related to 

multi-scale brain data (such as brain image from the brain regions and connectivity 

perspectives, and neuron from the axon and dendrites perspectives) are defined in the 

analysis dimension to guide the systematic brain computing. 

All of the four dimensions stated above are interlinked together in the conceptual Data-

Brain as shown in Figure 3.4, supporting the extensional representation of the human 

information-processing system and providing the traceable provenances in the thinking  
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Figure 3.4: The conceptual Data-Brain. The green-shaded nodes indicate the four dimensions of 

the conceptual Data-Brain from the function dimension, experiment dimension, data dimension 

and analysis dimension; the pink-shaded nodes indicate the subclasses of those dimensions with 

respect to various scopes; the blue-shaded nodes indicate more characterized subclasses for 

modeling multiple aspects of the systematic Brain Informatics methodology. 

 

space combined with various evidential chains of “Function domain – Experimental 

design – Brain data – Analytical method – Computing result” towards systematic brain 

computing. On the one hand, the core elements of the conceptual Data-Brain are firstly 

designed by experts from different fields, owing to the complexity of brain investigation. 

On the other hand, other existing ontologies and data models such as cognitive paradigm 

ontology [62] and cognitive atlas ontology [63] can be further linked to expand and enrich 

the conceptual Data-Brain. Such a collaborative learning mode can support scientists 

coming from different backgrounds to contribute their wisdom for advancing, exchanging 

and developing knowledge, as well as best practices around brain investigations. 
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3.3.2 The Sample Library 

The sample library is created to integrate the multi-layered brain resources, as the basic 

of brain computing, corresponding to multiple sources of data, information and 

knowledge. In this library, a complete description of provenances is designed to the 

neuroscience studies from raw data to the final results including all the details in-between. 

In the sample library, each sample is represented as a chain of evidence that contains the 

data and its context such as the research purpose (such as function domain and medical 

problem), experimental details, data properties, processing methods and computed results. 

We restricted some scopes to the factors and attributes that are crucial for systematic brain 

computing. Hence, this limited the number of categories that are illustrated in Table 3.1. 

The factors of each category can be deleted, updated and extended as needed. 

Depending on the data integration standard, as illustrated in Table 3.1, the brain data 

are normatively organized in the sample library. Such a standard not only enhances the 

readability for a machine, but also improves the interpretability and transparency to 

support data sharing and data reuse. Additionally, the computability is equally important, 

which is often overlooked in the previous studies. For example, the existing data 

integration architecture is mainly to provide a complete description of data objects, and 

describes their relations from the qualitative perspective. Such data integration 

architectures are able to participant in the sampling process of brain data, but indirectly 

affect the computing results. In the current study, the sample library extends the capability 

of conventional data integration architecture by mapping various samples to the 

conceptual Data-Brain with various weights. Hence, the relations among multiple 

samples can be quantitatively described to directly affect the brain computing results, 

because their weighted properties participant in computing processes themselves.  
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Table 3.1: Fifteen categories of neuroimaging entities are defined to represent the neuroimaging 

data and results. These entities indicate key factors in the neuroimaging study, and can be used to 

evidence combination and fusion computing. 

Category Description 

Human Intelligence Problem (HIP) 

The human intelligence problem is related to function domain that is an ability of the brain to process 

reasoning, calculation, problem-solving and so on. 

Human Health Problem (HHP) 

The human health problem is related to an abnormal symptom of individuals, such as depression, mild 

cognitive impairment and dementia. 

Region of Interest (ROI) A region of interest is a subset of a brain image identified for a particular purpose. 

Functional Subnetworks (FSN) 

The functional subnetworks represent very strong functional connections, such as default mode network, 

salience network and executive control network. 

Experimental Task (TSK) 

The experimental task is a cognitive task that the subject needs to complete during the neuroimaging 

study, such as serial complement task. 

Experimental Paradigm (EPM) 

The experimental paradigm is an experimental setup (i.e. a way to conduct a certain type of experiment) 

that is defined by certain fine-tuned standards and often has a theoretical background, including 

categorical designs, parametric designs and factorial designs. 

Experimental Protocol (EPL) 

The experimental paradigm involves the management of variables, their presentation, the assignment of 

respondents, and the statistical procedures of analysis and especially for event-related design, block 

design and mixed design. 

Explicit Stimulus (ESI) 

The explicit stimulus is a kind of sensory channel of subjects presented by stimuli during the 

neuroimaging study. 

Subject Type (SUB) 

The mental health conditions of a person who is suffering, commonly divided into various types of 

healthy control and populations with disorders. 

Data Modal (DAM) 

The data modal indicates the brain data that is collected by various techniques, such as fMRI (functional 

magnetic resonance imaging), EEG (electroencephalogram) and PET (positron emission tomography). 

Data State (DAS) 

The data state indicates the processed degree of a brain data, including the original raw data, derived 

data, the results of outputs, and the DOI if it has been published. 

Data Acquisition (DAA) 

The data acquisition involves a series of parameters that involves the properties of original raw data, such 

as MRI equipment, MRI pulse sequence and voxel size. 

Analytical Method (ANM) 

The analytical tool and method are the data analytical algorithm or software, which is used to mine 

experimental data during the neuroimaging study. 

Activation Region (ACR) 

The activated feature is a kind of brain responses that is mined from experimental data during the 

neuroimaging study, include the peak of the activation coordinate, the cluster size and so forth. 

Brain Connectivity (BRN) 

Brain connectivity refers to a pattern of anatomical links ("anatomical connectivity"), of statistical 

dependencies ("functional connectivity") or of causal interactions ("effective connectivity") between 

distinct units within a nervous system. 
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3.3.3 The Semantic Vector 

As mentioned above, the novel data integration standard provides a machine-readable 

representation to make data more understandable and computability. However, not all 

understandable data are needed, especially in big data era. Another core work is to 

develop a container that models human behaviors to select needed data with respect to a 

specific research goal. The semantic vector (SV) is a dynamic container, conveying 

interactive messages from the real-time service request to the internal representation of 

the request in system. Its core purpose is to provide the right sample for the right object 

at the right time and context towards the flexible data and analysis provenances. The 

semantic vector includes five objects surrounding research purposes (SV-ORP), 

experimental details (SV-OED), objective data (SV-OOD), processing methods (SV-

OPM) and computed results (SV-OCR), interacting with the categories of entities defined 

in the data integration standard of the sample library. Figure 3.5 demonstrates the details 

and workflows of the semantic vector, centered on a specific example. 

As shown in Figure 3.5, the semantic vector receives the service requests from users 

who can set up parameters of categories of interest defined in Table 3.1. Then, the 

semantic vector derives five objects to recognize parameters of each sample in the sample 

library, followed by measuring their matching degree to the service requests. At the same 

time, the selected samples are compared and sequenced on the basis of matching degree 

from big to small. Such actions are performed iteratively like the experimental designing 

behaviors of investigators. During this process, a list of samples can be obtained to serve 

as the systematic investigation purpose. For instance, during the system operation, the 

user requests are first translated to the four dimensions in the knowledge layer, and then 

multi-aspect provenances can be generated in the information layer to retrieve, organize, 
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Figure 3.5: The details and workflows of the semantic vector (SV). The SV transforms user 

requests (for example, the human intelligence problem “inductive reasoning”, the experimental 

task “the categorical and block design-based numerical serial complement task”, the data modal 

“fMRI data”) from the human-understandable terms to the machine-readable commands with 

respect to various objects of research purposes (SV-ORP), experimental details (SV-OED), 

objective data (SV-OOD), processing methods (SV-OPM) and computed results (SV-OCR) 

through interactive interfaces. Then, the SV runs the sampling operation to extract potential brain 

data from the sample library, at the same time, give the priority of matched samples. Such sorted 

brain data are given by the general intelligence model continuously, meeting the requirements of 

systematic brain computing.  

 

process and analyze data until the end of the whole learning processes. During these 

processes, brain data are processed through a loop that extracts core values of the data in 
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various abstract degree to meet needs for different purposes - going through the loop of 

data, information and knowledge (or the K-I-D loop for short) - from both bidirectional 

knowledge-driven and data-driven processes to systematic brain computing. 

3.4 Framework of the GIM 

The general intelligence model (GIM) models human intelligence-inspired problem-

solving capability, thereby enabling the systematic learning among different components 

(such as represent knowledge, inference engine, decision-making, and brain computing 

based on never-ending learning and human-in-the-loop) on the road of reaching human-

level AI society. Couple with these various components, the global picture of Data-Brain 

driven general intelligence model is illustrated in Figure 3.6. 

 

  

Figure 3.6: The global picture of Data-Brain driven general intelligence model (GIM). The GIM 

consists of the conceptual Data-Brain, the sample library as the extensional representation, K-I-

D architecture, K-I-D loop, the wisdom web of things (W2T) related algorithmic development to 

connect internal external evidence, never-ending learning and human-in-the-loop, depending on 

the Top-Down principle to investigate the brain. 
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To aid in this effort, several key points can be identified to construct such a general 

intelligence model, including: 

• Top-Down principle: a principle maps the development processes from the high-level 

abstract to the bottom-level details that guide us to develop such a general 

intelligence model; 

• Conceptual Data-Brain: a conceptual model to systematically represent brain data 

from various dimensions and their many-to-many relationships, with respect to all 

major aspects of the Brain Informatics methodology; 

• Extensional representation: the explicit expression of human intelligence by 

representing brain big data from the perspective of the human information-processing 

system (HIPS); 

• K-I-D architecture: a multi-source data integration architecture integrates knowledge 

representation at the top, information in the middle, and data at the lowest level; 

• K-I-D loop: the KID and DIK schemes are connected into a cycle as the thinking 

space for supporting dual-directed inference, computing and problem solving; 

• Connecting internal and external evidence: an evidence combination and fusion 

computing method to learn the internal evidence as the main source (such as the first-

hand raw data resources), aided by the external evidence (such as the second-hand 

paper resources) to serve as the same brain computing goal; 

• Never-ending learning (NEL): a learning mechanism drives the continuous iteration 

and evolution of the model and computing results, and achieves multi-dimensional 

interconnections in the social-cyber-physical space; 

• Human-in-the-loop (HITL): an interactive mechanism provides the multi-aspect 

support to connect human with the model before, during and after learning processes. 
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By integrating brain big data as the extensional representation of the human 

information-processing system, Data-Brain driven general intelligence model can be used 

as a bi-directional decoder between the inner brain information and the outer brain 

information by connecting brain and network with big data; an energy converter between 

brain science and artificial intelligence; and an engine from systematic brain-machine 

intelligence research to new AI industry chain in the connected world. As two important 

directions, such a model could be awakened by a series of tasks from brain intelligence 

and brain health. On the one hand, such a general intelligence model can help capture and 

explore brain functions from the basic cognitive neuroscience perspective. On the other 

hand, from the perspective of translational research, such an intelligence model can be 

used as an important tool in the era of digital transformation towards smart health society. 

The following sections provide the methods and technical details of how to construct such 

a general intelligence model, and how to use such a model to provide multi-aspect wisdom 

services. 

3.4.1 K-I-D Architecture 

Benefiting from the progress of open science in the brain big data era, increasing 

evidence gives the opportunity to interpret brain intelligence and health systematically. 

Towards the systematic brain investigation, the whole process of brain investigation can 

be implemented by integrating multi-modal and multi-scale brain big data from 

systematic design of cognitive experiments in our own research team and global open 

sources. The core issue is how to integrate and sample knowledge, information and data 

for meeting needs of systematic brain computing. Consequently, the layered K-I-D 

architecture of Data-Brain driven general intelligence model is constructed to support 

such a systematic integrating and computing method as illustrated in Figure 3.7. 



3.4 Framework of the GIM 61 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

 

Figure 3.7: The K-I-D architecture of Data-Brain driven general intelligence model. The brain 

big data resources are organized into a three-layer K-I-D architecture with knowledge graphs (K), 

wealthy information (I), and massive data (D). On the basis of K-I-D architecture, the KID scheme 

and the DIK scheme are connected into a cycle as the thinking space, namely the K-I-D loop, for 

systematic brain investigation. The never-ending learning mechanism based on the K-I-D loop 

drives the continuous iteration and evolution of the model. The interfaces ensure human-in-the-

loop that achieves multi-dimensional interconnections in the social-cyber-physical-thinking 

spaces. 

 

The following parts give an exhaustive illustration of the three-layered K-I-D 

architecture in Data-Brain driven general intelligence model, including: 

• Knowledge Layer 

By modeling the four aspects of the systematic Brain Informatics methodology stated 

in Section 3.2, the knowledge layer at the top of the K-I-D architecture is mainly 

presented as the four dimensions of the conceptual Data-Brain, that is, function 

dimension, experiment dimension, data dimension and analysis dimension, as well 

as their relations in knowledge graphs. Such prior knowledge-based four dimensions 
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form a thinking space to link the sample library and semantic vector, thereby 

providing holistic conceptual schemata for various Brain Informatics provenances. 

In turn, the newly transformed Brain Informatics provenances generate the new rules 

to enhance semantic inference and brain computing for updating the conceptual Data-

Brain. The knowledge layer also provides the wisdom service for users, that is, the 

new knowledge from the brain big data center will be produced when users utilize 

the general intelligence model, and become one part of the new round of knowledge-

generated cycle. On the one hand, the knowledge layer consists of the represent 

knowledge, such as facts, beliefs and experience for the interpretations of the brain 

mechanisms on function, structure and dynamics. Through the learning and inference 

processes within the general intelligence model, some explicit knowledge will be 

discovered to be integrated into the factual knowledge base for forming new 

knowledge and raising awareness. On the other hand, some tacit knowledge will also 

be discovered to be integrated into the extended knowledge base for promoting and 

inspiring the participant’s rethinking, re-practice, and re-recognition.  

• Information Layer 

The information layer in the middle of the K-I-D architecture is the bridge connecting 

the knowledge layer and the data layer, cooperating with the semantic vectors for the 

data provenance and the analysis provenance. The “provenance” means that the data 

and analytical histories of a data object can be fully tracked and interpreted within a 

particular request, and can be organized to respond to needs of various workflows 

flexibly. The informatics technique is the core to support the construction of 

information layer. Towards the whole lifecycle of systematic brain investigation, the 

semantic information is given to different forms of brain data obtained from various 
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sources to enable the systematization of measuring, collecting, modeling, 

transforming, managing, mining, interpreting and explaining. The information layer 

includes various entities that are instantiated from the four dimensions of the 

knowledge layer, and their corresponding attributes and values to represent the whole 

lifecycle of each data object in the data layer. For instance, it records explicit 

parameters about how the experimental data were acquired and processed, the timing 

and order of the stimuli presented in the task, the demographic information of 

subjects selected for analyses, the storage location of experimental data from each 

selected subject, the intermediate results of data analysis and so forth. Meanwhile, 

such semantic vectors with operational and computational modes are used to view, 

query, add, delete and modify instances in the sample library through the on-line and 

off-line learning during the internal and external processes. Internally, the metadata, 

data processing details and analytical results produced by the local sources are 

recorded and converted into the sample library. Externally, the global open sources 

are continuously searched to extract the information for specific user requests. Such 

extracted information is also integrated into the sample library by semantic vectors, 

which complements and improves the internal information. 

• Data Layer 

The data layer at the lowest of the K-I-D architecture merges full-scale brain big data 

that are systematically collected and integrated to reveal essences of brain 

intelligence and health, modeling their extensional representation. A full-scale 

perspective indicates a holistic consideration about the brain-related resources that 

advocate an integration of wide-ranging investigations from macro-, meso-, and 

micro- scales. At the macro-scale, the data layer integrates resources about behavioral 
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responses (such as accuracy and reaction time) and other physiological/non-

physiological information such as demographic attributes, scores of psychological 

and mental questionnaires, to support human mind study directly via external 

phenomena. At meso-scale, the data layer integrates resources with respect to the 

electrophysiological, hemodynamic and endocrine measures to support brain studies 

in neural mechanisms and their relationships with external behavior. Especially, the 

current model focuses on the systematic integration of function-related brain data 

obtained by both resting-state (task-free) and task-states. At micro-scale, the data 

layer integrates resources on the infrastructural units, such as neuron, synapse, 

protein and genome, to support cellular and molecular studies. Furthermore, the data 

layer responds to the multi-modal and multi-scale brain big data obtained from 

various data objects that are both physical and virtual. It is involved with not only 

integrating resources produced by various measuring instruments and sensing 

devices, but also integrating resources from the shared datasets and published results 

in the connected world. The data layer is also involved with various data management 

and processing technologies as well as application services, including data collection, 

cleaning, integration, storage, sharing and so on, for completing the whole process 

of the data cycle from both internal and external requests.  

3.4.2 Systematic Experimental Design 

The purpose of systematic experimental design is to produce the experimental plan 

towards systematic brain investigation, modeling the human behavior to understand 

human intelligence and health. More specifically, a systematic experimental plan is 

performed to further guide data sampling, analyzing and fusing, which are designed 

through the combination of multi-type experiments and rules. As mentioned earlier, 
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cognitive experiments are designed to test hypotheses about the relation between neural 

mechanisms and cognitive function. Our goal is to investigate which neural mechanisms 

support a specific cognitive function, and which cognitive functions may affect the 

activity of a specific neural mechanism. Considering an ideal experiment designed to test 

the goal and its related multiple hypotheses, it should consist of multiple tasks, conditions 

and contrasts that reflect comprehensive views. However, this strategy is restricted by 

many practical factors, such that investigators may have difficulties in contributing to 

such complex tasks that are easily executed by a single participant in one session. In 

practice, such an experimental strategy is often divided into multiple stages to be executed 

and follows some systematic design rules. For instance, investigators design an 

exploratory task as the main experiment that is used to directly test the goal hypothesis, 

followed by a series of supplementary experiments that are designed to test relevant 

cognitive hypotheses with the main experiment. Such differences of designing factors 

between the main experiment and the supplementary experiments are mainly from both 

dimensions of function and experiment related to the conceptual Data-Brain. As these 

progresses, the growing evidence is provided continuously to improve the interpretability 

of goal hypothesis, which has obvious the multi-task and sequence characteristics.   

The characteristics of systematic experimental plans challenge the behaviors of 

systematic experimental design, that is, how to design the next experiment based on the 

heuristics from the previous and current experiments. To address such problems, we 

distinguish various types of experiments with differences of factors in the function 

dimension and the experiment dimension, followed by linking them into such an 

experimental template graph based on various matching rules. Here, the main experiment 

(𝑇𝑚𝑎𝑒) that corresponds directly to the goal hypothesis, as a starting point for systematic 
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experimental design, and supplementary experiments that are inspired by the main 

experiment, as continuous supporting for evidence combination and fusion computing. 

The supplementary experiments are further defined as various experimental types, 

including the similar experiment (𝑇𝑠𝑖𝑒 ), the parallel experiment (𝑇𝑝𝑎𝑒 ), the deeper 

experiment (𝑇𝑑𝑒𝑒), the inspired experiment (𝑇𝑖𝑛𝑒), the missed experiment (𝑇𝑚𝑖𝑒) and the 

sub-processing experiment (𝑇𝑠𝑝𝑒 ). On the basis of the four dimensions defined in the 

conceptual Data-Brain, the characteristics of various experimental types are described as 

follows: 

• If an experiment is identified as the main experiment, its task corresponds directly to 

the goal hypothesis and includes the well-matched factors in the function dimension 

and the experiment dimension.  

• If an experiment is identified as the similar experiment, its task shares the similar 

factors with the 𝑇𝑚𝑎𝑒 in the function and experiment dimensions. However, the 𝑇𝑠𝑖𝑒 

and the 𝑇𝑚𝑎𝑒  share the different parameters in the data dimension, such as the 

difference of the brain image parameters from multiple data centers.  

• If an experiment is identified as the parallel experiment, its task shares the similar 

factors in the function dimension with the goal hypothesis-oriented 𝑇𝑚𝑎𝑒, but has 

different factors in the experiment dimension, such as the difference of explicit 

stimuli on digits and symbols.  

• If an experiment is identified as the deeper experiment, its task is used to further 

explore the hidden mental processes related to the 𝑇𝑚𝑎𝑒 , but corresponding to 

different cognitive hypotheses defined in the function dimension. For instance, the 

calculation related cognition activity is able to be studied through arithmetic tasks. 

However, such a task is not only relevant to calculation processing, but also related 
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to the numerical and symbolic processes that need to be further investigated by 

designing the 𝑇𝑑𝑒𝑒.  

• If an experiment is identified as the inspired experiment, its task is used to test the 

goal hypothesis that involves different factors in the function dimension from the 

𝑇𝑚𝑎𝑒 but shares the similar factors in the experiment dimension with the 𝑇𝑚𝑎𝑒.  

• If an experiment is identified as the missed experiment, its task does not satisfy the 

aforementioned criteria but evokes similar brain activities (such as patterns and 

indicators) with the 𝑇𝑚𝑎𝑒.  

• If an experiment is identified as the sub-processing experiment, its task is used to test 

the goal hypothesis-related single aspect within a dual-task paradigm. For instance, 

an experiment designed for association study of emotion and calculation may be 

regarded as two separate tasks to test the emotional and calculation hypotheses, 

respectively. 

The different types of experimental tasks in such a process of systematic experimental 

design are illustrated in Figure 3.8, by which multiple tasks are coupled with each other 

to match an experimental template graph with various rules and contributions. In Figure 

3.8, the 𝑇𝑚𝑎𝑒  and 𝑆𝐸𝑇 =  (𝑇𝑠𝑖𝑒 , 𝑇𝑝𝑎𝑒 , 𝑇𝑑𝑒𝑒 , 𝑇𝑖𝑛𝑒 , 𝑇𝑚𝑖𝑒 , 𝑇𝑠𝑝𝑒)  indicate the main 

experiment and supplementary experiments, respectively. The {𝑅𝑖|1 ≤  𝑖 ≤  6} 

indicates the matching rules that are used to design the experimental tasks, and then select 

the related brain data in the following processes of systematic experimental design. The 

{𝜀𝑖|1 ≤  𝑖 ≤  6}  indicates the similar degree of the samples obtained by the main 

experiment and the various supplementary experiment from the experimental design 

perspective, which are given by the experimental similarity evaluation, impacting the 

results of the evidential sampling. 
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Figure 3.8: The template graph of systematic experimental plans. 

 

Suppose there is a request from systematic experimental design to integrate multi-task 

brain data for filling with the experimental template graph defined in Figure 3.8 towards 

systematic fusion computing. Two types of factors in the function dimension (𝐹𝐷) and 

the experiment dimension (𝐸𝐷 ) are concerned. At a future point, to match the next 

experiment 𝑇𝑛𝑒𝑥𝑡  represented in such a template graph with respect to a systematic 

experimental plan, the 𝑇𝑛𝑒𝑥𝑡 − 𝐶𝑎𝑙𝑙 rules are defined as follows:  

𝑅1. 𝐼𝐹 (𝐹𝐷(𝑇𝑛𝑒𝑥𝑡) =  𝐹𝐷(𝑇𝑚𝑎𝑒)) 𝐴𝑁𝐷 (𝐸𝐷(𝑇𝑛𝑒𝑥𝑡) =  𝐸𝐷(𝑇𝑚𝑎𝑒)), 𝑇𝐻𝐸𝑁 𝛷(𝑇𝑛𝑒𝑥𝑡)  =  𝑇𝑠𝑖𝑒;  

𝑅2. 𝐼𝐹 (𝐹𝐷(𝑇𝑛𝑒𝑥𝑡)  =  𝐹𝐷(𝑇𝑚𝑎𝑒)) 𝐴𝑁𝐷 (𝐸𝐷(𝑇𝑛𝑒𝑥𝑡)  ≠  𝐸𝐷(𝑇𝑚𝑎𝑒)), 𝑇𝐻𝐸𝑁 𝛷(𝑇𝑛𝑒𝑥𝑡)  =  𝑇𝑝𝑎𝑒; 

𝑅3. 𝐼𝐹 (𝐹𝐷(𝑇𝑛𝑒𝑥𝑡) ≠ 𝐹𝐷(𝑇𝑚𝑎𝑒)) 𝐴𝑁𝐷 (𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝐹𝐷(𝑇𝑛𝑒𝑥𝑡), 𝐹𝐷(𝑇𝑚𝑎𝑒)) ≠  ∅ ) 

   𝐴𝑁𝐷 (𝐸𝐷(𝑇𝑛𝑒𝑥𝑡)  =  𝐸𝐷(𝑇𝑚𝑎𝑒)), 𝑇𝐻𝐸𝑁 𝛷(𝑇𝑛𝑒𝑥𝑡)  =  𝑇𝑑𝑒𝑒;  

𝑅4. 𝐼𝐹 (𝐹𝐷(𝑇𝑛𝑒𝑥𝑡) ≠  𝐹𝐷(𝑇𝑚𝑎𝑒)) 𝐴𝑁𝐷 (𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝐹𝐷(𝑇𝑛𝑒𝑥𝑡), 𝐹𝐷(𝑇𝑚𝑎𝑒)) =  ∅ ) 

      𝐴𝑁𝐷 (𝐸𝐷(𝑇𝑛𝑒𝑥𝑡)  =  𝐸𝐷(𝑇𝑚𝑎𝑒)), 𝑇𝐻𝐸𝑁 𝛷(𝑇𝑛𝑒𝑥𝑡)  =  𝑇𝑖𝑛𝑒;  

𝑅5. 𝐼𝐹 (𝐹𝐷(𝑇𝑛𝑒𝑥𝑡) ≠  𝐹𝐷(𝑇𝑚𝑎𝑒)) 𝐴𝑁𝐷 (𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝐹𝐷(𝑇𝑛𝑒𝑥𝑡), 𝐹𝐷(𝑇𝑚𝑎𝑒)) =  ∅ ) 

 𝐴𝑁𝐷 (𝐸𝐷(𝑇𝑛𝑒𝑥𝑡) ≠  𝐸𝐷(𝑇𝑚𝑎𝑒)) 𝐴𝑁𝐷 (𝑅𝑒𝑠𝑢𝑙𝑡𝑠(𝑇𝑛𝑒𝑥𝑡) ∩  𝑅𝑒𝑠𝑢𝑙𝑡𝑠(𝑇𝑚𝑎𝑒) ≠  ∅),  

       𝑇𝐻𝐸𝑁 𝛷(𝑇𝑛𝑒𝑥𝑡)  =  𝑇𝑚𝑖𝑒.  
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Furthermore, for an experimental paradigm within the mixed methods that is designed 

to explore the mutual effect between multiple cognitive processes, such a 𝑇𝑚𝑎𝑒 can be 

directly divided into multiple sub-processing experiments (such as the 𝑇𝑚𝑎𝑒
𝑖   and the 

𝑇𝑚𝑎𝑒
𝑗

) that are matched based on the following 𝑇𝑛𝑒𝑥𝑡 − 𝐶𝑎𝑙𝑙 rule:  

𝑅6. 𝐼𝐹 ((𝐹𝐷(𝑇𝑛𝑒𝑥𝑡) =  𝐹𝐷(𝑇𝑚𝑎𝑒
𝑖 ))𝐴𝑁𝐷 (𝐸𝐷(𝑇𝑛𝑒𝑥𝑡) =  𝐸𝐷(𝑇𝑚𝑎𝑒

𝑖 )))  𝑂𝑅  

        ((𝐹𝐷(𝑇𝑛𝑒𝑥𝑡) =  𝐹𝐷(𝑇𝑚𝑎𝑒
𝑗
))𝐴𝑁𝐷 (𝐸𝐷(𝑇𝑛𝑒𝑥𝑡) =  𝐸𝐷(𝑇𝑚𝑎𝑒

𝑗
))),  

     𝑇𝐻𝐸𝑁 𝛷(𝑇𝑛𝑒𝑥𝑡)  =  𝑇𝑠𝑝𝑒. 

where “=” and “≠” indicates the factors of convergence and divergence, respectively, the 

Function 𝛷(·)  is used to identify the experimental type of a task, the Function 

“𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(·, ·)” is used to identify the cognitive relevance of two experiments through 

walking in the conceptual Data-Brain, the Function “𝑅𝑒𝑠𝑢𝑙𝑡𝑠(·)” is used to compute the 

brain data. 

On the basis of a systematic experimental plan, the relevant resources from the sample 

library are sampled by the semantic vectors to guide the further operations of integrating, 

computing and analyzing. Considering both views of function and experiment, the 

procedure of systematic experimental design is shown in Algorithm 3.1. Given a goal 

hypothesis related to the function dimension (𝐺𝐹𝐷)  and the experiment dimension 

(𝐺𝐸𝐷), the conceptual Data-Brain (𝐶𝐷𝐵), a set of various supplementary experimental 

types 𝑆𝐸𝑇 , the designing depth (𝐷𝐸𝐷 ) and the 𝑇𝑛𝑒𝑥𝑡 − 𝐶𝑎𝑙𝑙  rules, a systematic 

experimental plan that organizes multiple tasks in a graph is generated to guide future 

data sampling, analysis and computing. The 𝑆𝐸𝑇  and 𝐷𝐸𝐷  determine the scale and 

complexity of an experimental plan. The whole process interacts with the sample library 

that maintains various information in the function dimension, the experiment dimension, 

the data dimension and the analysis dimension. 
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Algorithm 3.1: Systematic Experimental Design (𝑆𝐸𝐷) 

Input: the goal hypothesis, 𝐺𝐹𝐷.                 ⊳ From Function Dimension 

      the goal hypothesis, 𝐺𝐸𝐷.                 ⊳ From Experiment Dimension 

      the 𝐶𝐷𝐵; 

      the designing breadth, 𝑆𝐸𝑇; 

      the designing depth, 𝐷𝐸𝐷. 

Output: the experimental task graph, 𝑇𝑆𝑌𝑆
𝐺  = (𝑇𝑚𝑎𝑒, (𝑇𝑠𝑖𝑒

𝐺 , 𝑇𝑝𝑎𝑒
𝐺 , 𝑇𝑑𝑒𝑒

𝐺 , 𝑇𝑖𝑛𝑒
𝐺 , 𝑇𝑚𝑖𝑒

𝐺 , 𝑇𝑠𝑝𝑒
𝐺 )). 

procedure Depth Experiment Designing (𝐷𝐸𝐷, 𝑆𝐸𝑇, 𝐺𝐹𝐷, 𝐺𝐸𝐷, 𝐶𝐷𝐵) 

1:  Initializing the designing depth, 𝐷𝐸 = 1; 

2:  Initializing a template graph, 𝑇𝑡𝑒𝑚𝑝
𝐺 (𝑇𝑚𝑎𝑒 , 𝑆𝐸𝑇 ); 

3:  𝐺𝐹𝐷
𝑚𝑎𝑒, 𝐺𝐸𝐷

𝑚𝑎𝑒  ←  G𝐹𝐷 , G𝐸𝑆; 

4:  Matching a 𝑇𝑚𝑎𝑒(𝐺𝐹𝐷
𝑚𝑎𝑒 , 𝐺𝐸𝐷

𝑚𝑎𝑒)  from the sample library; 

5:  𝑇𝑓𝑢𝑙𝑙
𝐺  ← Adding 𝑇𝑚𝑎𝑒(𝐺𝐹𝐷

𝑚𝑎𝑒 , 𝐺𝐸𝐷
𝑚𝑎𝑒) to 𝑇𝑡𝑒𝑚𝑝

𝐺  at the 𝑇𝑚𝑎𝑒; 

6:  𝐶𝑎𝑙𝑙 Breadth Experiment Designing (𝑇𝑓𝑢𝑙𝑙
𝐺 , 𝐺𝐹𝐷

𝑚𝑎𝑒 , 𝐺𝐸𝐷
𝑚𝑎𝑒 , 𝑆𝐸𝑇, 𝐶𝐷𝐵); 

7:  𝑇𝑆𝑌𝑆
𝐺 = 𝑇𝑓𝑢𝑙𝑙

𝐺 ; 

8:  𝐷𝐸 + +; 

9:  while 𝐷𝐸 ≤ 𝐷𝐸𝐷 do 

10:  for Each task 𝑇𝑖  in the 𝑇𝑆𝑌𝑆
𝐺  at the depth of (𝐷𝐸 − 1) do 

11:     Initializing a template graph, 𝑇𝑡𝑒𝑚𝑝
𝐺 (𝑇𝑚𝑎𝑒 , 𝑆𝐸𝑇 ); 

12:     𝑇𝑚𝑎𝑒  ← 𝑇𝑖; 

13:     𝐺𝐹𝐷
𝑚𝑎𝑒 , 𝐺𝐸𝐷

𝑚𝑎𝑒  ← 𝐹𝐷 𝑜𝑓 𝑇𝑖, 𝐸𝐷 𝑜𝑓 𝑇𝑖; 

14:     𝑇𝑓𝑢𝑙𝑙
𝐺  ← Adding 𝑇𝑖  to 𝑇𝑡𝑒𝑚𝑝

𝐺  at the 𝑇𝑚𝑎𝑒; 

15:     𝐶𝑎𝑙𝑙 Breadth Experiment Designing (𝑇𝑓𝑢𝑙𝑙
𝐺 , 𝐺𝐹𝐷

𝑚𝑎𝑒 , 𝐺𝐸𝐷
𝑚𝑎𝑒 , 𝑆𝐸𝑇, 𝐶𝐷𝐵); 

16:     Linking (𝑇𝑆𝑌𝑆
𝐺 , 𝑇𝑓𝑢𝑙𝑙

𝐺 ) at the 𝑇𝑖; 

17:  end for 

18:  𝐷𝐸 + +; 

19:  end while 

20:  return 𝑇𝑆𝑌𝑆
𝐺  

procedure Breadth Experiment Designing (𝑇𝑓𝑢𝑙𝑙
𝐺 , 𝐺𝐹𝐷

𝑚𝑎𝑒 , 𝐺𝐸𝐷
𝑚𝑎𝑒 , 𝑆𝐸𝑇, 𝐶𝐷𝐵) 

1:  for Each 𝑇𝑦𝑝𝑒 in the 𝑆𝐸𝑇 do 

2:     while 𝑇𝑛𝑒𝑥𝑡  is 𝑁𝑢𝑙𝑙 do 

3:         Getting a task 𝑇(𝐹𝐷, 𝐸𝐷) from the sample library; 

4:         Inferring the relation between 𝐺𝐹𝐷
𝑚𝑎𝑒 and 𝐹𝐷 based on the 𝐶𝐷𝐵; 

5:         Inferring the relation between 𝐺𝐸𝐷
𝑚𝑎𝑒  and 𝐸𝐷; 

6:        if Matching 𝑇𝑛𝑒𝑥𝑡-𝐶𝑎𝑙𝑙 rules then 

7:          Adding 𝑇(𝐹𝐷, 𝐸𝐷) to 𝑇𝑓𝑢𝑙𝑙
𝐺 ; 

8:        end if 

9:     end while 

10:  end for 

11:  return 𝑇𝑓𝑢𝑙𝑙
𝐺  
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3.4.3 Evidence Combination and Fusion Computing 

Couple with systematic experiment design, the evidence corresponding to various 

experimental types is also selected from the sample library. In Data-Brain driven general 

intelligence model, the collected samples are computed via two strategies: 

• Forward inference: The brain data are computed by the task-driven strategy and the 

univariate pattern analysis methods such as general linear model with statistics. 

• Reverse inference: The brain data are computed by the data-driven strategy and the 

multivariate pattern analysis methods such as Searchlight.  

According to the two brain computing strategies, various brain computing results are 

obtained from different evidence. The core is how to fuse these computing results of 

evidence to give the multi-aspect and solid results. We consider the shared brain 

activation patterns from different functional domains and experimental tasks. 

Firstly, we consider the forward inference-based evidence combination and fusion 

computing. In this approach, the evidence is divided into two different types, including 

the Type-I evidence and the Type-II evidence, towards different strategies of evidence 

combination for the fusion computing request.  

• The Type-I evidence is related to the intra-evidence combination. The intra-evidence 

combination means a variety of investigations, in which methods and technologies 

work within a cognitive functional domain. On the one hand, when two evidence-

oriented function domains belong to the relationship of the cognitive component and 

the cognitive subcomponent, these evidences are identified as Type-I evidence (See 

Figure 3.9(a) and (b)). In this context, the brain computing results of an evidence can 

give positive support for the computing results from another evidence. One of the 

most typical cases is the study on human reasoning, in which the evidence from the 
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rule identification and extrapolation can advance our understanding on the inductive 

reasoning [87]. On the other hand, when multiple evidences belong to a cognitive 

function (See Figure 3.9(c)), it can be investigated by the comparative analysis under 

multiple controlled conditions from the experimental perspective, the comparative 

analysis under multiple computing methods from the analysis perspective, and the 

comparative analysis of the multimodal brain data from the data perspective. In such 

cases, the Data-Brain driven general intelligence model is designed to support the 

intra-domain multi-aspect analyses from three core functions, including the 

experimental condition-based analysis function, the computing method-based 

analysis function, and the multimodal data-based analysis function. 

• The Type-II evidence is related to the inter- evidence combination. The inter- 

evidence combination means a variety of investigations, in which methods and 

technologies work among multiple cognitive domains (See Figure 3.9(d-g)). It is a 

multi-domain learning paradigm to leverage the common information contained in 

multiple related functional domains to help improve the generalization performance 

of all the domains [197]. For example, according to [198], the relations among 

decision-making, reasoning, executive functioning and cognitive abilities are 

investigated simultaneously to reveal the nature of brain intelligence. In this case, the 

brain computing results of such supplementary experiment-oriented evidence can 

give opposed support for the computing results from the main experiment-oriented 

evidence. For example, inductive reasoning and calculation belong to different 

functional domains, the brain data of which will be analyzed by the inter-strategy. 

When the human reasoning-related hypothesis is tested, the calculation-related brain 

computing results will decrease the level of confidence to the given hypothesis. 
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Figure 3.9: The discriminant rule of evidential types. The VM is the evidence corresponding to 

the main experiment, while the VS is the evidence corresponding to the supplementary 

experiments. The ROOT and FS-SUB indicate the concepts of brain function in the conceptual 

Data-Brain with the cognitive relevance. 

 

Additionally, considering the differentiated contributions of various supplementary 

experiments to the main experiment, the evidential degree (𝜆 ) is given manually and 

measured automatically to be merged into evidence combination and fusion computing. 

Figure 3.10 illustrates the processes of the forward inference-based fusion computing. 

The brain computing results observed by a supplementary experiment 𝑇𝑛𝑒𝑥𝑡 are used as 

the evidence to assess the uncertain distribution of the main experiment 𝑇𝑚𝑎𝑒 ’s 

hypothesis overlapping with that of the 𝑇𝑛𝑒𝑥𝑡. It is realized that combining distributed 

assessment with single-aspect consequents (such as the 𝑍-value) can enable various types 

of tasks to be incorporated into a hypothesis testing process. In the following, the multi-

level uncertainty distribution 𝜏 with respect to the brain computing results of the goal 

hypothesis-oriented main experiment is given by: 
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   𝜏 = ∑ [𝜏(𝑅(𝑇𝑚𝑎𝑒)) + 𝜆(𝑇𝑛𝑒𝑥𝑡)𝜏(𝑅(𝑇𝑛𝑒𝑥𝑡))]𝑇𝑛𝑒𝑥𝑡∈𝑆𝐸𝑇

𝑅(𝑇𝑚𝑎𝑒),𝑅(𝑇𝑛𝑒𝑥𝑡)⊆𝐶𝑜𝑅 

     (3.1) 

where 𝑅(𝑇𝑚𝑎𝑒) and 𝑅(𝑇𝑛𝑒𝑥𝑡) indicate the brain computing results from the analyses of 

the main and supplementary experiments, respectively, 𝐶𝑜𝑅 =  {𝑅(𝑇𝑚𝑎𝑒) ∩ 𝑅(𝑇𝑛𝑒𝑥𝑡)} 

indicates the overlapping results between paired 𝑇𝑚𝑎𝑒  and 𝑇𝑛𝑒𝑥𝑡 , 𝜏(𝑅(𝑇𝑚𝑎𝑒))  and 

𝜏(𝑅(𝑇𝑛𝑒𝑥𝑡))  indicate the uncertainty distribution from the main and supplementary 

experiments, given by the brain computing results. 

 

 

Figure 3.10: The evidence combination and fusion computing approach. 

 

Through the forward inference-based evidence combination and fusion computing, the 

computed uncertainty distribution helps us understand the subtle relations between brain 

patterns and cognitive functions, at the same time, providing multi-level interpretations 

with respect to the goal hypothesis. Given the τ distribution of a brain pattern is greater 

than zero, the greater the τ distribution of the brain pattern is, the more specific the brain 

pattern has for a hypothetical brain function. Given the τ distribution of a brain pattern is 

smaller than zero, the smaller the τ distribution of the brain pattern is, the more general 
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the brain pattern has for multiple hypothetical functions. Given the τ distribution of a 

brain pattern is equal to zero, the selected brain pattern maintains the high randomness. 

Secondly, we consider the reverse inference-based evidence combination and fusion 

computing. During this learning process, the multivariate pattern analysis is performed to 

consider spatial patterns of brain activity over ensembles of multiple variates (such as 

voxels and nodes), recovering what information they represent collectively [63, 112]. The 

machine learning methods are selected to discriminate between brain patterns associated 

with different cognitive states. In this case, we carry out the evidence combination and 

fusion computing from three dimensions of cognitive states, including complexity, 

condition and component, respectively. For the dimension of complexity, the predictive 

results are used to test information-processing capability of a brain pattern to various 

experimental tasks with varied complexity (such as, the complex task vs. the simple task). 

For the dimension of condition, a brain pattern is tested by discriminating between the 

same-level component of interest (such as, addition vs. subtraction within the mental 

arithmetic task). For the dimension of component, a brain pattern is tested by 

discriminating between the component of interest and baseline component (such as, 

number induction vs. number judgement within inductive reasoning). On the basis of 

definition above, the predictive results can be fused by the data-driven reverse inference 

and weighted fusion computing. Considering that the greater difference between two 

types of experimental tasks may lead to the greater difference in brain activity patterns, 

and then impact the classification effects. We need to design the weights with respect to 

different cognitive states, as follows: 

  {

   𝛼(𝑋), 𝑖𝑓 𝑋 =  𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 −  𝑏𝑎𝑠𝑒𝑑 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛.

𝛼(𝑌), 𝑖𝑓 𝑌 =  𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 −  𝑏𝑎𝑠𝑒𝑑 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛.

   𝛼(𝑍), 𝑖𝑓 𝑍 =  𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑙𝑒𝑣𝑒𝑙 −  𝑏𝑎𝑠𝑒𝑑 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛.

        (3.2) 
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where 𝛼(∙)  indicate the weight, 𝛼(𝑋)  ≈  𝛼(𝑌)  >  𝛼(𝑍) , and 𝛼(𝑋) +  𝛼(𝑌) +

 𝛼(𝑍) = 1. Hence, the predictive results of multiple evidences corresponding to the intra-

analysis can be fused to answer a question about “the information-processing capability 

of a specific brain pattern (𝐵𝑅𝑃) to a specific cognitive functional domain (𝐶𝐹𝐷)”. It is 

defined as the support coefficient 𝛾 (0 ≤ 𝛾 ≤ 1), which is calculated as follows: 

         𝛾(𝐵𝑅𝑃 → 𝐶𝐹𝐷) = ∑ (
∑ α(Ф)×P(Ф)
𝑁(Ф)
𝑖=1

𝑁(Ф)
)Ф∈{𝑋,𝑌,𝑍}                    (3.3) 

where 𝑁(Ф) is the number of the Ф predictive mode, P(Ф) indicates the predictive 

results under a cognitive state Ф. 

3.4.4 Never-Ending Learning (NEL) 

By integrating systematic experimental design with evidence combination and fusion 

computing, a never-ending learning paradigm is studied to realize such a novel brain big 

data computing approach. More specifically, never-ending learning [199] is dependent on 

the K-I-D loop from the continuous iteration and evolution of Data-Brain driven general 

intelligence model to learn multiple sources of knowledge, information and data, 

continuously and incrementally, towards providing multi-aspect results and new findings 

underlying human brain. On the one hand, the never-ending learning paradigm produces 

the specific brain pattern that is related to a specific cognitive function with more 

confidence through the task-driven KID inference, which helps us understand the 

specificity of a function-related brain pattern. On the other hand, the never-ending 

learning paradigm produces multi-aspect interpretations of brain functions for a specific 

brain pattern through the data-driven DIK inference, which helps us understand the brain 

pattern-contributed difference for various cognitive functions. The procedure of the 

never-ending learning within the K-I-D loop is described in Algorithm 3.2. The 

implementation process of never-ending learning begins with Algorithm 3.1, during 
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which the experimental task graph 𝑇𝑆𝑌𝑆
𝐺 , the uncertainty distribution 𝜏, and the support 

coefficient 𝛾 are obtained.  

Algorithm 3.2: K-I-D Loop (Never-ending Learning in Thinking Space) 

Input: the goal hypothesis, 𝐺𝐹𝐷.                ⊳ From Function Dimension 

      the goal hypothesis, 𝐺𝐸𝐷.                ⊳ From Experiment Dimension 

      the conceptual Data-Brain, 𝐶𝐷𝐵; 

      the cognitive functional domain, CFD; 

      the designing breadth, 𝑆𝐸𝑇 =  (𝑇𝑠𝑖𝑒 , 𝑇𝑝𝑎𝑒 , 𝑇𝑑𝑒𝑒 , 𝑇𝑖𝑛𝑒 , 𝑇𝑚𝑖𝑒 , 𝑇𝑠𝑝𝑒); 

      the designing depth, 𝐷𝐸𝐷. 

Output: the experimental task graph, 𝑇𝑆𝑌𝑆
𝐺  = (𝑇𝑚𝑎𝑒 , (𝑇𝑠𝑖𝑒

𝐺 , 𝑇𝑝𝑎𝑒
𝐺 , 𝑇𝑑𝑒𝑒

𝐺 , 𝑇𝑖𝑛𝑒
𝐺 , 𝑇𝑚𝑖𝑒

𝐺 , 𝑇𝑠𝑝𝑒
𝐺 )) 

        the support coefficient, 𝛾; 

        the uncertainty distribution, 𝜏. 

// Task-driven KID loop 

procedure KID (𝐷𝐸𝐷, 𝑆𝐸𝑇, 𝐺𝐹𝐷, 𝐺𝐸𝐷, 𝐶𝐷𝐵) 

1:  𝑇𝑆𝑌𝑆
𝐺 = 𝑆𝐸𝐷(𝐷𝐸𝐷, 𝑆𝐸𝑇, 𝐺𝐹𝐷 , 𝐺𝐸𝐷 , 𝐶𝐷𝐵); 

2:  𝑆𝑉𝑠 = 𝐷𝑎𝑡𝑎 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 (𝑇𝑆𝑌𝑆
𝐺 , 𝑆𝑎𝑚𝑝𝑙𝑒 𝑙𝑖𝑏𝑟𝑎𝑟𝑦); 

3:  𝐷𝑎𝑡𝑎 𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑔(𝑇𝑆𝑌𝑆
𝐺 , 𝑆𝑉𝑠); 

4:  𝑅(𝑇𝑚𝑎𝑒)  =  𝐷𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 (𝑆𝑉 𝑜𝑓 𝑇𝑚𝑎𝑒); 

5:  𝑅(𝑇𝑛𝑒𝑥𝑡) =  𝐷𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔(𝑆𝑉 𝑜𝑓 𝑇𝑛𝑒𝑥𝑡); 

6:  Initializing 𝜏 =  [0]; 

7:  while 𝐷𝐸𝐷 >  0 do 

8:    𝑇𝑚𝑎𝑒 ← The (𝐷𝐸𝐷 −  1) loop nodes in the 𝑇𝑆𝑌𝑆
𝐺 ; 

9:    𝑇𝑛𝑒𝑥𝑡 ← The 𝐷𝐸𝐷 loop nodes in the 𝑇𝑆𝑌𝑆
𝐺 ; 

10:    Computing 𝜏; 

11:    𝐷𝐸𝐷 --; 

12:  end while 

13:  return 𝑇𝑆𝑌𝑆
𝐺 , 𝜏 

// Data-driven DIK loop 

procedure DIK (𝐷𝐸𝐷, 𝑆𝐸𝑇, 𝐺𝐹𝐷, 𝐺𝐸𝐷, 𝐶𝐷𝐵) 

1:  𝑇𝑆𝑌𝑆
𝐺 = 𝑆𝐸𝐷(𝐷𝐸𝐷, 𝑆𝐸𝑇, 𝐺𝐹𝐷 , 𝐺𝐸𝐷 , 𝐶𝐷𝐵); 

2:  𝑆𝑉𝑠 = 𝐷𝑎𝑡𝑎 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 (𝑇𝑆𝑌𝑆
𝐺 , 𝑆𝑎𝑚𝑝𝑙𝑒 𝑙𝑖𝑏𝑟𝑎𝑟𝑦); 

3:  𝐷𝑎𝑡𝑎 𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑔(𝑇𝑆𝑌𝑆
𝐺 , 𝑆𝑉𝑠); 

4:  𝑃(𝑇𝑚𝑎𝑒)  =  𝐷𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 (𝑆𝑉 𝑜𝑓 𝑇𝑚𝑎𝑒); 

5:  𝑃(𝑇𝑛𝑒𝑥𝑡) =  𝐷𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔(𝑆𝑉 𝑜𝑓 𝑇𝑛𝑒𝑥𝑡); 

6:  Initializing γ = [0]; 

7:  for each 𝐶𝐹𝐷 in function dimension do 

8:     Computing 𝛾; 

9:  end for 

10: Prioritization of 𝛾 for all 𝐶𝐹𝐷; 

11: return 𝑇𝑆𝑌𝑆
𝐺 , 𝛾 
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3.4.5 Human-in-the-Loop Interactive Learning (HITL) 

Human-in-the-loop puts humans in never-ending learning that takes into consideration 

human intents, psychological states, emotions and actions [200]. Such a design method 

of interactive artificial intelligence systems can be beneficial in solving the 

computationally NP-hard problem, especially facing the complex brain [201]. By 

integrating experience and knowledge from human expertise, the human-in-the-loop 

mechanism can make learning more relevant, effective, transparent and reasonable. In 

this thesis, we study two views of human-in-the-loop: one is that human-in-the-loop 

participants in the learning direction of Data-Brain general intelligence model, namely 

thinking-space construction; another is that human-in-the-loop participants in the 

interactive learning process, namely human-aided interactive learning. 

3.4.5.1 Thinking-space Construction 

In practice, the structured constituents of each domain are defined in the knowledge 

layer of the conceptual Data-Brain that provides the operational interface, and then the 

multi-task brain data driven by semantic vectors are sampled and mapped to a uniform 

space for never-ending learning. In Data-Brain driven general intelligence model, human 

mainly interacts with the thinking space in three ways, including request setting, resource 

refining and resource screening in such a human-in-the-loop process.  

• Firstly, request setting is a reconstruction process of the conceptual Data-Brain. In 

this stage, investigators constraint scope of functional domains in the function 

dimension to meet research goal. For example, a human reasoning-centric systematic 

study may involve inductive reasoning and its subcomponents such as rule 

identification and extrapolation. Meanwhile, their relational properties are given on 

the basis of computational principles and personal experience. In the experiment 
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dimension, task-related parameters are given, such as experimental paradigms, 

experimental protocol and explicit stimuli surrounding interest of investigators. In 

the data dimension, the data-related parameters are given, such as the data modal of 

fMRI, the data state of raw data, the subject type of healthy. In the analysis dimension, 

the computing details are given. For example, general linear model framework-based 

method is used as the core computing method in such a KID scheme. Hence, these 

related parameters are given, such as the statistical P value, the corrected methods, 

the size of cluster selected from the set of {10, 20, 30, 50, 100, 150,… }. Meanwhile, 

the Searchlight method is used as the core computing method in such a DIK scheme. 

Hence, selection of the machine learning methods needs to be concerned. Such 

reconstructed four dimensions are connected as a computable Data-Brain that is 

integrated into never-ending learning.  

• Secondly, resource refining occurs at updating stages (including add, modify, delete 

and query operations) of the sample library and the conceptual Data-Brain. For those 

processes of mapping the internal and external resources to the sample library, human 

can ensure correctness of information and add missing information. Furthermore, 

human is indispensable for extending and refine of knowledge surrounding the 

conceptual Data-Brain. In this process of collective modes, investigator not only 

participant in their own learning process, but also help shed new light on learning 

processes from other investigators.  

• Thirdly, human also participants in the process of resource screening. In each loop, 

although brain data can be automatically sampled, computed and fused, the 

complexity of higher cognitive functions tells us that the fully autonomous learning 

paradigm is not enough. For example, in the operational procedures of external 
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evidence, the topic modeling can automatically extract meaning from neuroimaging 

articles by identifying their themes or topics. However, it is difficult to identify a core 

topic from a paper with multiple topics, especially in the context of full-text learning. 

Hence, we need to a further rescreening of the topic-related articles on the basis of 

an initial screening of the topic modeling. 

3.4.5.2 Human-aided Interactive Learning 

In this part, we introduce the human-aided interactive learning method within human-

in-the-loop. Through this kind of inference mechanism based on the comparative index-

matching procedures, this model can select some candidate patterns/indicators and 

investigate their fruitful meaning for further study. The key mechanism of the human-

aided interactive learning is to integrate the actions of human thinking into the data 

mining and knowledge discovery process. Support for decision-making is realized by 

combining the advantages of data- and knowledge-driven methods. Based on the 

constraints and definitions, the comprehensive information-processing pipeline for the 

human-aided interactive learning is shown in Figure 3.11. 

Investigators operates the interface to interact with various Thinking-Entities (𝑇𝐸𝑠 ≥

 3) in the general intelligence model. A Thinking-Entity is a basic operating unit involved 

in the whole life cycle of a sample from the sample library, including the optional 

knowledge unit, 𝑇𝐸𝐾, the optional information unit, 𝑇𝐸𝐼, and the optional data unit, 

𝑇𝐸𝐷. In details, the 𝑇𝐸𝐾 options the cognitive concepts from the function dimension of 

the conceptual Data-Brain; the 𝑇𝐸𝐼  options the hypothetical brain patterns; the 𝑇𝐸𝐷 

options the sampled brain data. The output of the general intelligence model is a list of 

the association pairs between cognitive concepts in the knowledge layer and 

patterns/indicators defined in the information layer whose feature properties are observed  



3.4 Framework of the GIM 81 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

 

Figure 3.11: The information-processing pipeline of human-in-the-loop. The dotted arrows 

indicate two schemes from top-down and bottom-up perspectives respectively. The red arrows 

indicate multiple human-computer interaction processes between human and the model. The blue 

arrows indicate information flows that run within the model. Details of various processes are 

described as follow: ○1  Knowledge-driven process: In this process, the ability of participants is 

continuously improved by learning the existing theory and knowledge. ○2  Data-driven process: 

Participants obtain new information and knowledge by observing, summarizing and analyzing 

phenomena at different angles from data. ○3   Practical process: In the course of the practice, 

participants will get new observation data based on experience and knowledge, which is a sub-

process from ○2  . ○4   Data mapping process: The knowledge representation of the data is 

implemented in this process. ○5  Heuristic learning process: The computer will generate different 

symbols to control the initial conceptual weight change (excitement, suppression or constant) in 

this human-computer interaction process. ○6   Active learning process: Participants can 

selectively forget some of the weight activation symbols generated in the previous step based on 

the contextual environment of Thinking-Entities. The action symbols obtained by the ○5  and ○6  

processes are synthesized to control the next change in weight. Iterate between the processes ○5  

and ○6  until the condition of convergence is reached. ○7 , ○8  and ○9  are the processes of rule 

inference.  

 

in the data layer, after never-ending learning within the K-I-D loop. In this model, the 

hybrid knowledge-driven KID and data-driven DIK schemes in learning and inference 

stages are defined: 

• The KID scheme: In the learning stage, the conceptual weights are obtained by users 

in the 𝑇𝐸𝐾  of the Thinking-Entity, which are used to measure the relevance 
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between the cognitive function and the sampled brain data. Meanwhile, the metric 

and/or pattern characteristics of the sampled brain data are measured in the 𝑇𝐸𝐼 and 

𝑇𝐸𝐷 , respectively. In the inference stage, some information is obtained by the 

learning process from the knowledge layer to the data layer, in the purpose of 

verifying indicators with stability and measuring patterns with special significance. 

• The DIK scheme: In the learning stage, the conceptual weights are obtained by 

multiple human-computer interaction processes and the metric and/or pattern 

characteristics of original data are also evaluated concurrently. In the inference stage, 

some information is obtained by the learning process from the data layer to the 

knowledge layer, in the purpose of exploring more semantic knowledge or contextual 

information related to patterns and/or indicators. 

This current closed-loop model is not only one that generates evidential information to 

complement and correct existing knowledge, but also one that generates hypothetical 

information to inspire us to carry out the next phase of experimental design and related 

work. Therefore, the ability of the human-aided interactive learning is continuously 

improved during the never-ending learning process of human-in-the-loop. Following this 

learning paradigm, some important issues need to be identified: 

• How do we construct various Thinking-Entities towards the integration, processing 

and computing of multi-source brain resources for systematic brain research;  

• How do we implement the Thinking-Entities based interactive learning in the 

current closed-loop model; and  

• How do we make inference and judgment to generate new meaningful and valuable 

plans, and then guide further experiments for obtaining more evidence towards 

never-ending learning?  
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For this, we further explain the connectionist architecture of each element in the human-

aided interactive learning process. Their details are described as follows, including the 

human-aided interactive KID learning method and the human-aided interactive DIK 

learning method, corresponding to different schemes. For the convenience of readers, a 

list of essential symbols and abbreviations are shown in Table 3.2.  

a: Human-aided Interactive KID Learning Method 

Obtaining effective brain patterns and indicator calculation methods is one of the most 

important directions in the study of cognitive and clinical characteristics. As we all know, 

there are thousands of definitions and computing methods for existing patterns and 

indicators. How to choose the quantitative indicators and evaluation methods has become 

a huge challenge during addressing a specific brain science problem. The purpose of the 

human-aided interactive KID interactive learning method within human-in-the-loop is to 

compare, compute and evaluate the effectiveness of different indicators and patterns in 

the 𝐼𝑛𝑓𝑜𝐿 by utilizing prior knowledge in the 𝐾𝑛𝑜𝑤𝐿 and brain data in the 𝐷𝑎𝑡𝑎𝐿, 

which is similar to the feature or pattern selection processes in machine learning. The 

main processes in different layers include: 
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Table 3.2: List of essential symbols and abbreviations. 

Category Description 

𝐾𝑛𝑜𝑤𝐿 
A computable knowledge layer, bound by a set of concepts from the 

conceptual Data-Brain.  

𝐼𝑛𝑓𝑜𝐿 
A computable information layer, bound by the definition of patterns (PID) 

and the computing methods of indicators (PIM). 

𝐷𝑎𝑡𝑎𝐿 
A computable data layer, consisting of samples that are computed to 

obtain properties of patterns and indicators. 

𝐷𝑇𝐸𝐾 

The 𝑇𝐸𝐾  whose weights are predefined from expert or personal 

inclination, where 𝐷𝑇𝐸𝐾 =  {𝑐1: 𝑣1, 𝑐2: 𝑣2, … , 𝑐𝑛: 𝑣𝑛}. Here, ci refers to 

the 𝑖𝑡ℎ concept in the conceptual Data-Brain, 𝑣𝑖 (0 ≤ 𝑣𝑖 ≤ 1) refers to 

the value of the weight coefficient corresponding to the 𝑖𝑡ℎ concept. 

𝐿𝑇𝐸𝐾 

The 𝑇𝐸𝐾 whose weights are learned from human-machine interaction, 

where 𝐿𝑇𝐸𝐾 =  {𝑐1: 𝑣1, 𝑐2: 𝑣2, … , 𝑐𝑛: 𝑣𝑛} . Here, ci refers to the 𝑖𝑡ℎ 

concept in the conceptual Data-Brain, 𝑣𝑖 (0 ≤ 𝑣𝑖 ≤ 1)  refers to the 

value of the weight coefficient corresponding to the 𝑖𝑡ℎ concept. 

Sdif 
The vector represents the semantic distance among multiple Thinking-

Entities. 

Kdif 
The conceptual difference matrix represents the weight differences 

corresponding to all concepts among multiple Thinking-Entities. 

Ddif 
The feature difference matrix represents the significant differences in 

patterns or indicators among multiple Thinking-Entities. 

𝐶𝑛
𝑚 Combination in mathematics, 

𝑛!

𝑚!(𝑛−𝑚)!
 (𝑛 ≥ 𝑚). 

𝐴𝐵𝑆 (𝑋) Return absolute value for value X. 

𝐷𝑖𝑠𝑡 (𝑥, 𝑦) 

Return the distance between variables x and y by various similarity 

measurement methods such as the Euclidean distance algorithm and the 

Hamming distance algorithm. 

𝑆𝑜𝑟𝑡 (𝑠𝑜𝑟𝑡_𝑣𝑎𝑙𝑢𝑒𝑠) Return sorts in descending order and their index. 

𝑍𝑒𝑟𝑜𝑠 (𝑚, 𝑛) Return a matrix of the given shape and type, filled with 0. 

𝑅𝑎𝑛𝑑 (𝑚, 𝑛) 
Return a matrix of the given shape with random floats in the interval [0.0, 

1.0]. 
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1) Based on the prior knowledge, the concepts in conceptual Data-Brain can be 

adjusted to 𝐷𝑇𝐸𝐾 =  {𝑐1: 𝑣1, 𝑐2: 𝑣2, … , 𝑐𝑛: 𝑣𝑛} by the expert before the learning 

process. The adjusted 𝐷𝑇𝐸𝐾  will affect the distribution of concept 𝑐𝑖  in the 

𝑇𝐸𝐾  and then affect its dimensions. In addition, a concept 𝑐𝑖  defined in the 

𝐾𝑛𝑜𝑤𝐿  can be encoded as a value 𝑣𝑖 (0 ≤ 𝑣𝑖 ≤ 1)  with following rules: the 

weight of concept is 1, if its corresponding meaning is mostly related to the context 

of a sample in the Thinking-Entity; otherwise, its weight is 0. At this point, a 

Thinking-Entity is mapped to a computable vector space with the interval [0, 1] 

properties, such as 𝐷𝑇𝐸𝐾 =  {𝑐1: 0.1, 𝑐2: 0.5, … , 𝑐𝑛: 0.8}.  

2) Based on the request of investigators, the definition of the brain patterns (𝑃𝐼𝐷) and 

the brain computing methods of the indicators (𝑃𝐼𝑀 ) could be bounded by the 

𝐼𝑛𝑓𝑜𝐿 . For example, the effectiveness of the paired 〈𝑃𝐼𝐷𝑝, 𝑃𝐼𝑀𝑠〉  can be 

validated by the learning process from the 𝐾𝑛𝑜𝑤𝐿 to the 𝐷𝑎𝑡𝑎𝐿. Here, the 𝑃𝐼𝐷𝑝 

may be a network pattern “default mode network”, and the 𝑃𝐼𝑀𝑠  may be an 

indicator such as “clustering coefficient”, “local efficiency” and “global efficiency”.  

3) The property values of different indicators and brain patterns defined above are 

computed in the 𝐷𝑎𝑡𝑎𝐿 , corresponding to various Thinking-Entities. Then, the 

values of significant differences between these Thinking-Entities can be obtained 

by the statistical theory.  

The computing operations in the 𝐾𝑛𝑜𝑤𝐿, 𝐼𝑛𝑓𝑜𝐿 and 𝐷𝑎𝑡𝑎𝐿 are executed as shown 

in Algorithm 3.3. The computed results obtained from various layers will be used as input 

to the rule engine, and then used to select the effective patterns and feature extraction 

methods by comparative learning strategy. Here, the comparative learning strategy is 

performed by comparing the difference between paired Thinking-Entities in the 𝐾𝑛𝑜𝑤𝐿 
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and the 𝐷𝑎𝑡𝑎𝐿 , corresponding to various brain patterns/indicators in the 𝐼𝑛𝑓𝑜𝐿 . 

Supposing there are three Thinking-Entities, that is, 𝑇𝐸𝑖 , 𝑇𝐸𝑗  and 𝑇𝐸𝑘 , they are 

predefined by 𝐷𝑇𝐸𝐾𝑖, 𝐷𝑇𝐸𝐾𝑗 and 𝐷𝑇𝐸𝐾𝑘 in the 𝐾𝑛𝑜𝑤𝐿, as well as being computed 

to achieve their property values (i.e., 𝑃𝑉𝑖, 𝑃𝑉𝑗 and 𝑃𝑉𝑘) in the 𝐷𝑎𝑡𝑎𝐿, respectively.  

• Firstly, based on the predefined 𝐷𝑇𝐸𝐾 corresponding to various Thinking-Entities 

in the 𝐾𝑛𝑜𝑤𝐿, their semantic differences among different Thinking-Entities could 

be computed by 𝐷𝑖𝑠𝑡 (𝑥, 𝑦) , achieving 𝑆𝑑𝑖𝑓 =

[𝐷𝑖𝑠𝑡 (𝐷𝑇𝐸𝐾𝑖, 𝐷𝑇𝐸𝐾𝑗), 𝐷𝑖𝑠𝑡 (𝐷𝑇𝐸𝐾𝑖,  𝐷𝑇𝐸𝐾𝑘),𝐷𝑖𝑠𝑡 (𝐷𝑇𝐸𝐾𝑗, 𝐷𝑇𝐸𝐾𝑘)].  

• Secondly, based on the computed property values in the 𝐷𝑎𝑡𝑎𝐿 , their property 

differences among different Thinking-Entities could be computed by 𝐷𝑖𝑠𝑡 (𝑥, 𝑦) , 

achieving 𝐷𝑑𝑖𝑓 = [𝐷𝑖𝑠𝑡 (𝑃𝑉𝑖, 𝑃𝑉𝑗), 𝐷𝑖𝑠𝑡 (𝑃𝑉𝑖, 𝑃𝑉𝑘), 𝐷𝑖𝑠𝑡 (𝑃𝑉𝑗, 𝑃𝑉𝑘) ]. 

• Finally, the obtained semantic differences 𝑆𝑑𝑖𝑓 and property differences 𝐷𝑑𝑖𝑓 are 

sorted by 𝑆𝑜𝑟𝑡 (𝑆𝑑𝑖𝑓)  and 𝑆𝑜𝑟𝑡 (𝐷𝑑𝑖𝑓 ) , respectively. For the paired 

〈𝑃𝐼𝐷𝑝, 𝑃𝐼𝑀𝑠〉  in the 𝐼𝑛𝑓𝑜𝐿 , if 𝐷𝑖𝑠𝑡 (𝐷𝑇𝐸𝐾𝑖, 𝐷𝑇𝐸𝐾𝑗) ≥

𝐷𝑖𝑠𝑡 (𝐷𝑇𝐸𝐾𝑖, 𝐷𝑇𝐸𝐾𝑘) ≥ 𝐷𝑖𝑠𝑡 (𝐷𝑇𝐸𝐾𝑗, 𝐷𝑇𝐸𝐾𝑘)  and 𝐷𝑖𝑠𝑡 (𝑃𝑉𝑖, 𝑃𝑉𝑗) ≥

𝐷𝑖𝑠𝑡 (𝑃𝑉𝑖, 𝑃𝑉𝑘) ≥ 𝐷𝑖𝑠𝑡 (𝑃𝑉𝑗, 𝑃𝑉𝑘) , the current 〈𝑃𝐼𝐷𝑝, 𝑃𝐼𝑀𝑠〉  will be 

recommended. 

The KID inference rule is used to infer the learning results obtained by Algorithm 3.3, 

including the 𝑆𝑑𝑖𝑓 and the 𝐷𝑑𝑖𝑓. First, we sort the elements in the 𝑆𝑑𝑖𝑓 and the 𝐷𝑑𝑖𝑓 

for each row from large to small and get their positional indexes. Then, the positional 

indexes of the 𝐷𝑑𝑖𝑓  for each row are compared with that of the 𝑆𝑑𝑖𝑓 . When the 

positional indexes of the 𝐷𝑑𝑖𝑓  for a row are consistent with that of the 𝑆𝑑𝑖𝑓 , the 

〈𝑃𝐼𝐷𝑝, 𝑃𝐼𝑀𝑠〉 pair corresponding to the current row is output, which is defined in the 

𝐼𝑛𝑓𝑜𝐿.  
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Algorithm 3.3: Human-aided Interactive KID Learning (KID-HITL) 

Input: The set of N Thinking-Entities (TEs), 𝑇𝐸𝑠 =  {𝑇𝐸1,   𝑇𝐸2,… , 𝑇𝐸𝑘,… , 𝑇𝐸𝑁|2 < 𝑖 ≤ 𝑁};  

      The 𝐷𝑇𝐸𝐾𝑠 = {𝐷𝑇𝐸𝐾1,… , 𝐷𝑇𝐸𝐾𝑖, … , 𝐷𝑇𝐸𝐾𝑗 … } with the C concepts and  

      the predefined weights, corresponding to various Thinking-Entities; 

      The P pattern definitions and/or Q computing methods from the 𝐼𝑛𝑓𝑜𝐿,  

      𝑃𝐴𝑆𝑒𝑡 =  {〈𝑃𝐼𝐷𝑝 , 𝑃𝐼𝑀𝑞〉|1 < 𝑝 ≤ 𝑃, 1 < 𝑞 ≤ 𝑄}. 

Initialize: 𝑆𝑑𝑖𝑓 = 𝑍𝑒𝑟𝑜𝑠 (1, 𝐶𝑁
2); 

         𝐷𝑑𝑖𝑓 = 𝑍𝑒𝑟𝑜𝑠 (𝑃, 𝑄 × 𝐶𝑁
2); 

Output: 𝑆𝑑𝑖𝑓 & 𝐷𝑑𝑖𝑓. 

procedure in the 𝐾𝑛𝑜𝑤𝐿 and the 𝐼𝑛𝑓𝑜𝐿 

1:  Initialing 𝑙 =  1; 

2:  for 𝑖 = 1, 1 < 𝑁, 𝑖 + + do 

3:     for 𝑗 = 𝑖 + 1, 𝑗 ≤ 𝑁, 𝑗 + + do 

4:        𝑆𝑑𝑖𝑓 [𝑙]  =  𝐷𝑖𝑠𝑡 (𝐷𝑇𝐸𝐾𝑖, 𝐷𝑇𝐸𝐾𝑗); 

5:        𝑙 + +; 

6:     end for 

7:  end for 

8:  Return 𝑆𝑑𝑖𝑓 

procedure in the 𝐷𝑎𝑡𝑎𝐿 

1:  for 𝑝 = 1, 𝑝 ≤ 𝑃, 𝑝 + + do 

2:     for 𝑞 = 1, 𝑞 ≤ 𝑄, 𝑞 + + do 

3:        Calculating property values of 𝑇𝐸𝑠 based on 𝑃𝐼𝐷𝑝and 𝑃𝐼𝑀𝑞 , namely 𝑃𝑉𝑠 

4:     end for 

5:    for 𝑞 = 1, 𝑞 ≤ 𝑄, 𝑞 + + do 

6:      Initialing 𝑚 =  1; 

7:      for 𝑖 = 1, 1 < 𝑁, 𝑖 + +  do 

8:        for 𝑗 = 𝑖 + 1, 𝑗 ≤ 𝑁, 𝑗 + +  do 

9:          𝐷𝑑𝑖𝑓 [𝑝, 𝐶𝑁
2 × (𝑞 − 1) + 𝑚]  =  𝐷𝑖𝑠𝑡 (𝑃𝑉𝑖, 𝑃𝑉𝑗); 

10:          𝑚 ++; 

11:        end for 

12:      end for 

13:    end for 

14:  end for 

15:  Return 𝐷𝑑𝑖𝑓 

 

  



3.4 Framework of the GIM 88 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

b: Human-aided Interactive DIK Learning Method 

The main purpose of the interactive DIK learning method is to interpret the 

characteristics of a specific feature pattern, for example, to answer the question about “Is 

it the limbic system related to emotion”. In this interactive procedure, the new semantic 

vector 𝐿𝑇𝐸𝐾 = {𝑐1: 𝑣1, 𝑐2: 𝑣2, … , 𝑐𝑛: 𝑣𝑛}  is acquired by the comparative learning 

strategy in the 𝐾𝑛𝑜𝑤𝐿. The brain patterns of interest from the 𝐼𝑛𝑓𝑜𝐿 are evaluated on 

the basis of the comparisons of property values in the 𝐷𝑎𝑡𝑎𝐿 . Its computational 

procedure is described in Algorithm 3.4.  
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Algorithm 3.4: Human-aided Interactive DIK Learning (DIK-HITL) 

Input:  

      The set of N Thinking-Entities (TEs), 𝑇𝐸𝑠 =  {𝑇𝐸1,   𝑇𝐸2,… , 𝑇𝐸𝑘,… , 𝑇𝐸𝑁|2 < 𝑖 ≤ 𝑁};  

      The 𝐿𝑇𝐸𝐾𝑠 = {𝐿𝑇𝐸𝐾1,… , 𝐿𝑇𝐸𝐾𝑖, … , 𝐿𝑇𝐸𝐾𝑗, … } with C concepts and initial weights,  

      corresponding to various Thinking-Entities; 

      The P pattern definitions and/or Q computing methods from 𝐼𝑛𝑓𝑜𝐿,  

      𝑃𝐴𝑆𝑒𝑡 =  {〈𝑃𝐼𝐷𝑝 , 𝑃𝐼𝑀𝑞〉|1 < 𝑝 ≤ 𝑃, 1 < 𝑞 ≤ 𝑄}; 

      The maximum number of iterations, 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 ,  

      The level of marginal significance, P − Value. 

Initialize: 𝐾𝑑𝑖𝑓 = 𝑍𝑒𝑟𝑜𝑠 (𝐶, 𝐶𝑁
2); 

         𝐿𝑇𝐸𝐾𝑠 =  𝑅𝑎𝑛𝑑(𝐶, 𝑁); 

         𝐷𝑑𝑖𝑓 = 𝑍𝑒𝑟𝑜𝑠 (𝑃, 𝑄 × 𝐶𝑁
2). 

Output: 𝐾𝑑𝑖𝑓, 𝐿𝑇𝐸𝐾𝑠 with learned weights and 𝐷𝑑𝑖𝑓. 

procedure in the 𝐾𝑛𝑜𝑤𝐿 and the 𝐼𝑛𝑓𝑜𝐿 

1:  Initialing 𝑙 =  1; 

2: for 𝑖 = 1, 𝑖 < 𝑁, 𝑖 + + do 

3:   for 𝑗 = 𝑖 + 1, 𝑗 < 𝑁 + 1, 𝑗 + + do 

4:      Randomly initialize 𝐿𝑇𝐸𝐾𝑖 and 𝐿𝑇𝐸𝐾𝑗 within 0 to 1; 

5:      while 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 ≠ 0 do 

6:         Convergence conditions analysis with 𝐿𝑇𝐸𝐾𝑖 and 𝐿𝑇𝐸𝐾𝑗; 

7:         if Satisfy convergence conditions then 

8:           break; 

9:         else 

10:          Step 1: Generating random weight adjustment (enhancement and suppression) symbols 

by machine for each concept in 𝐿𝑇𝐸𝐾𝑠; 

11:          Step 2: Changing the adjustment symbols generated in Step 1 by the user based on the 

information obtained; 

12:          Step 3: Updating weights in 𝐿𝑇𝐸𝐾𝑖 and 𝐿𝑇𝐸𝐾𝑗 according to symbols from Step 1 and 

                   Step 2; 

13:          𝑚𝑎𝑥𝑖𝑡𝑒𝑟 − −; 

14:        end if 

15:      end while 

16:      𝐾𝑑𝑖𝑓 [: , 𝑙]  =  𝐴𝐵𝑆(𝐿𝑇𝐸𝐾𝑖 −  𝐿𝑇𝐸𝐾𝑗); 

17:      𝑙 + +; 

18:   end for 

19: end for 

procedure in the 𝐷𝑎𝑡𝑎𝐿 based on Algorithm 3.1 
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Difference from the inductive KID learning procedure, their weights (only 0 or 1) in 

the 𝑇𝐸𝐾 are set by experts or users before learning processes. In the interactive DIK 

learning method, however, the weights (from 0 to 1) are obtained during learning 

processes with multiple iterations. The following steps describe the interactive DIK 

method in details: 

• Convergence Conditions. Steps 1 to 3 in Algorithm 3.4 are iterated until the 

algorithm reaches a predefined stopping criterion. In particular, the procedure is 

stopped if the statistical significance in the predefined 𝑃 − 𝑉𝑎𝑙𝑢𝑒  is reached 

between 𝐿𝑇𝐸𝐾𝑖  and 𝐿𝑇𝐸𝐾𝑗  in an iteration or after a predetermined number of 

iterations. As mentioned above, a comparative learning strategy is designed in the 

general intelligence model, that is, comparing the semantic and data characteristics 

of different Thinking-Entities at each iteration. The basic consensus here is that when 

human performs multiple tasks using a domain-specific knowledge framework, the 

execution strategies are more or less relevant among different tasks, but some take 

the same operation and some take the opposite operation on details [202]. In 

particular, when the behaviors are recorded from two kinds of different circumstances 

or experimental tasks, multiple identical or similar cognitive processes will be called 

simultaneously, which reflects the overlap and correlation [203]. However, due to 

differences of pre-set goals, the degree of participation of the cognitive process under 

each task is also different on details, which leads to the positive or negative 

correlation trend when evaluating the overall processes. Therefore, the convergence 

condition is to determine whether there is the statistical significance between both 

𝐿𝑇𝐸𝐾𝑖  and 𝐿𝑇𝐸𝐾𝑗  in 𝐿𝑇𝐸𝐾𝑠 , including positive correlation and negative 

correlation. Here, the semantic distance can be used as a priori condition to judge the 
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positive or negative relationship between different Thinking-Entities. In particular, if 

there is a large semantic distance between two Thinking-Entities, then it is considered 

to be a negative correlation in the computing process of the corresponding 𝐿𝑇𝐸𝐾𝑖 

and 𝐿𝑇𝐸𝐾𝑗; otherwise, it is a positive correlation. 

• Weight Computing. In Step 1, a control weight vector (𝐶𝑊𝑉) consists of randomly 

generated three signs ‘-1’, ‘0’, and ‘1’, and is of the same size as 𝐿𝑇𝐸𝐾𝑠. In this 

vector, the sign - 1 means that the weight of the corresponding concept in 𝐿𝑇𝐸𝐾𝑠 

will decrease in the next weight updating process; the sign 0 means that the weight 

will not be changed; and the sign 1 means that the weight of the corresponding 

concept in 𝐿𝑇𝐸𝐾  will increase in the next weight updating process. During the 

interaction process, the user can control the symbol change in 𝐶𝑊𝑉 by judging the 

relevance of the concept to each Thinking-Entity, thereby changing the next weight-

updating action. For example, users can set these symbols to zero according to 

personal understanding and observation in each iteration, that is, forgetting the 

weight-updating action in an interactive process. Hence, if a concept 𝑐𝑖 in 𝐿𝑇𝐸𝐾𝑠 

is considered to be closely related to the Thinking-Entity 𝑇𝐸𝑖, but the sign ‘-1’ in 

𝐶𝑊𝑉  is generated by computer for this concept during the generation of control 

variables. Then the sign ‘-1’ can be set to sign ‘0’, so that it does not participate in 

the next weight updating, and vice versa. In the initial phase of each iteration, the 

number and distribution of signs ‘-1’, ‘0’, and ‘1’ in the 𝐶𝑊𝑉  are random. We 

consider to obtain one 𝐶𝑊𝑉 for each two Thinking-Entities during the processes of 

human-computer interaction in Step 1.  

Then, how to compute and update the weights of both 𝐿𝑇𝐸𝐾𝑖 and 𝐿𝑇𝐸𝐾𝑗 at one 

time. First, the 𝐶𝑊𝑉 generated by the computer is set to control the weight-updating 
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process of the 𝐿𝑇𝐸𝐾𝑖. Then, the 𝐶𝑊𝑉 of the 𝐿𝑇𝐸𝐾𝑗 is generated by comparing 

the semantic distance between the two Thinking-Entities, which includes two cases 

in Step 2: 

- When the semantic distance of both Thinking-Entities is small enough to be 

considered as positive correlation: If the sign ‘1’ appears in the 𝐶𝑊𝑉 during an 

iteration and the current weight of the corresponding position in 𝐿𝑇𝐸𝐾𝑖 is greater 

than 𝐿𝑇𝐸𝐾𝑗, the corresponding position of the 𝐶𝑊𝑉 for 𝐿𝑇𝐸𝐾𝑗 is also set to the 

sign ‘1’. Conversely, the corresponding position is set to the sign ‘-1’. If the sign ‘-

1’ appears in the 𝐶𝑊𝑉 during an iteration and the weight of the corresponding 

position in 𝐿𝑇𝐸𝐾𝑖  is greater than 𝐿𝑇𝐸𝐾𝑗 , the corresponding position of 𝐶𝑊𝑉 

for 𝐿𝑇𝐸𝐾𝑗 is also set to the sign ‘-1’. Otherwise, the corresponding position is set 

to the sign ‘1’. In other cases, 𝐿𝑇𝐸𝐾𝑖 and 𝐿𝑇𝐸𝐾𝑗 have the same control symbol 

for the 𝐶𝑊𝑉.  

- When the semantic distance of both Thinking-Entities is large enough to be 

considered as negative correlation: if the sign ‘1’ appears in 𝐶𝑊𝑉  during an 

iteration and the weight of the corresponding position in 𝐿𝑇𝐸𝐾𝑖 is greater than 

𝐿𝑇𝐸𝐾𝑗, the corresponding position of the 𝐶𝑊𝑉 for the 𝐿𝑇𝐸𝐾𝑗 is set to the sign 

‘-1’. Conversely, if the weight of the corresponding position in 𝐿𝑇𝐸𝐾𝑖 is smaller 

than 𝐿𝑇𝐸𝐾𝑗, the position is set to the sign ‘1’. If the sign ‘-1’ appears in 𝐶𝑊𝑉 

during an iteration and the weight of the corresponding position in the 𝐿𝑇𝐸𝐾𝑖 is 

smaller than the 𝐿𝑇𝐸𝐾𝑗 , the corresponding position of 𝐶𝑊𝑉  of the 𝐿𝑇𝐸𝐾𝑗  is 

also set to the sign ‘1’. Conversely, the corresponding position is set to the sign ‘-

1’. In other cases, the 𝐶𝑊𝑉𝑠 of 𝐿𝑇𝐸𝐾𝑖 and 𝐿𝑇𝐸𝐾𝑗 have the same control signs. 



3.4 Framework of the GIM 93 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

The weights of concepts in the 𝐿𝑇𝐸𝐾𝑖 and 𝐿𝑇𝐸𝐾𝑗 are calculated based on these 

signs after obtaining the 𝐶𝑊𝑉 in Step 3. In combination with the above, 

      𝑤(𝑡 + 1) =  

{
 

 𝑤(𝑡) +
1−𝑤(𝑡)

𝑅𝐼𝑁
, 𝑠𝑖𝑔𝑛 𝑖𝑛 𝐶𝑊𝑉 = 1

𝑤(𝑡), 𝑠𝑖𝑔𝑛 𝑖𝑛 𝐶𝑊𝑉 = 0

𝑤(𝑡) −
𝑤(𝑡)

𝑅𝐼𝑁
, 𝑠𝑖𝑔𝑛 𝑖𝑛 𝐶𝑊𝑉 = −1

               (3.4) 

 where 𝑤  represents the weight of the concept, 𝑡  indicates the order of human 

computer interaction, and 𝑅𝐼𝑁  indicates the number of remaining iterations. 

Finally, the weight of each concept, which is the real number of the closed interval 

[0, 1], is obtained by the interactive DIK learning procedure for each Thinking-Entity. 

Obviously, we will acquire more details of the knowledge layer for each Thinking-

Entity in this procedure, such as the contribution of different concepts within one 

task or among multiple tasks. 

Through the above learning process, we can get the 𝐾𝑑𝑖𝑓, the 𝐿𝑇𝐸𝐾𝑠 with learned 

weights and the 𝐷𝑑𝑖𝑓. The first two are the results obtained through the calculation in 

the 𝐾𝑛𝑜𝑤𝐿 and the 𝐼𝑛𝑓𝑜𝐿, and the last one is the result obtained through the calculation 

in the 𝐷𝑎𝑡𝑎𝐿. These results will be entered into the inference engine and then generate 

new information and knowledge based on rule constraints. The DIK inference rule is used 

to infer the learned results obtained by Algorithm 3.4. The elements of the 𝐾𝑑𝑖𝑓 and the 

𝐷𝑑𝑖𝑓 for each row are sorted from large to small and get their positional indexes. Then, 

the positional indexes of the 𝐷𝑑𝑖𝑓 for each row are compared with that of the 𝐾𝑑𝑖𝑓 for 

each row. When positional indexes of two rows are consistent by the above comparison, 

the corresponding position of 〈𝑃𝐼𝐷𝑝, 𝑃𝐼𝑀𝑠〉 pair with concept is given and output by 

using a form of 〈〈𝑃𝐼𝐷𝑝, 𝑃𝐼𝑀𝑠〉, concept 〉 pair, where the concept is from the 𝐿𝑇𝐸𝐾𝑠. 

Through this kind of inference mechanism based on the comparative index-matching 
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procedures, the general intelligence model can select some candidate patterns/indicators 

with fruitful meaning in the knowledge layer for further study. 

3.5 The Systematic Brain Computing with HITL-Aided NEL 

The pipeline of the systematic brain computing approach is shown in Figure 3.12, 

which is formalized as a loop towards the human thinking-supported never-ending 

learning of the brain and translational research. More details regarding such a systematic 

brain computing approach are introduced as follows, including the conceptual Data-Brain 

setup, systematic experimental design, evidential type inference, evidence combination 

and fusion computing, towards never-ending learning: 

• Conceptual Data-Brain Setup. At the beginning of such a systematic brain 

computing process, people interact with the general intelligence model through 

the conceptual Data-Brain setup. The conceptual Data-Brain [161, 204] provides 

a thinking space, which includes multiple knowledge graphs to represent the 

systematic brain investigation processes from four dimensions related to brain 

functions, experimental tasks, data organization and analytic methods. It describes 

different scopes and their relations (including “include” and “related-to”) at the 

conceptual level. For example, if we solely consider the “include” relation in the 

subgraph of function, this graph will become a tree structure with “Function 

Dimension” being the root node. During this human-in-the-loop process, people 

assign various factors of interest such as experimental factors and analytical 

factors, corresponding to various questions and hypotheses. Here a question may 

be to explore which neural structures support a specific cognitive function, and 

which cognitive functions may be related to a specific neural structure. 
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Furthermore, such factors also directly impact the intra- and inter- analytical 

strategies, the computing processes and interpretations of results.  

• Systematic Experimental Design. Systematic experimental design indicates that the 

model knows how to design the next experiment based on the heuristic from the 

previous experiments, depending on experimental types with similarity assessment 

through experiment dimension of the conceptual Data-Brain. The experimental types 

can be identified by the 𝑇𝑛𝑒𝑥𝑡 − 𝐶𝑎𝑙𝑙  rules stated in Section 3.4.2. To assess the 

experimental similarity 𝜀 between two samples, it is necessary to describe the 

experimental profile such as paradigm- and stimuli-related factors, by which the 

design process is quantifiable. Here, we give an example to realize this process, 

which is related to about three representative factors stated in Table 3.1. These three 

factors include experimental paradigm (𝐸𝑃𝑀), experimental protocol (𝐸𝑃𝐿), explicit 

stimulus (𝐸𝑆𝐼). Hence, the experimental similarity assessment can be realized on the 

basis of these experimental factors, 𝛳 = {𝐸𝑃𝑀, 𝐸𝑃𝐿, 𝐸𝑆𝐼}, which is given by: 

           𝜀(𝑇𝑀, 𝑇𝑆) =
1

𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝛳
∑ 𝐵𝐼𝑁(𝑇𝑀

𝜃𝑖 , 𝑇𝑆
𝜃𝑖)𝜃𝑖∈𝛳

            (3.5) 

where 𝜀 indicates the experimental similarity, 𝑇𝑀 indicates the main experiment, 𝑇𝑆 

indicates a certain supplementary experiment; 𝜃𝑖  is the 𝑖𝑡ℎ  variable which 

indicates various factors in 𝛳; 𝑇𝑀
𝜃𝑖 indicates the factor properties of 𝑇𝑀 at 𝜃𝑖, 𝑇𝑆

𝜃𝑖 

indicates the factor properties of 𝑇𝑆 at 𝜃𝑖; 𝐵𝐼𝑁(𝑇𝑀
𝜃𝑖 , 𝑇𝑆

𝜃𝑖)= 1 if 𝑇𝑀
𝜃𝑖 is consistent 

with 𝑇𝑆
𝜃𝑖. 
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Figure 3.12: The schematic diagram of the systematic brain computing approach. A conceptual 

Data-Brain is constructed to guide systematic investigations of complex brain science problems, 
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systematic design of cognitive experiments, systematic brain data collection and management, as 

well as systematic brain data analysis and simulation stated in the Brain Informatics methodology. 

The hierarchical experimental design, evidential type inference, and evidence combination and 

fusion computing are performed to realize never-ending learning and translational applications. 
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• Evidential Type Inference. These evidences are classified into different types with 

the evidence weight coefficient 𝜆, namely Type-I and Type-II evidence, which are 

identified by the discriminant rule of evidential types stated in Section 3.4.3. Here, 

the Type-I evidence is learned to increase the level of confidence to the given 

hypothesis, conversely, the Type-II evidence will decrease the level of confidence to 

the given hypothesis. For example, the evidence 𝑉𝑀 and 𝑉𝑆 are corresponding to 

the main experiment and the supplementary experiments, respectively. If the 

evidence 𝑉𝑆  is identified as the Type-I evidence, it indicates that the functional 

domain of 𝑉𝑆 can be the “ancestor” or “descendants” relationship of 𝑉𝑀, according 

to function dimension of the conceptual Data-Brain. Inversely, if 𝑉𝑆 is identified as 

the Type-II evidence, the functional domains of 𝑉𝑀  and 𝑉𝑆  belong to other 

relationships that are different from the Type-I evidence, such as the “sibling” 

relationship. The 𝜆  coefficients are determined as follows: (1) if the functional 

domain of the 𝑉𝑆 is the “descendants” relationship with that of the 𝑉𝑀 in function 

dimension of the conceptual Data-Brain, 𝜆 =  1; (2) if the functional domain of the 

𝑉𝑆  is the “ancestor” relationship with the 𝑉𝑀 , 𝜆 =  ∏
1

𝑑𝑒𝑔𝑟𝑒𝑒 𝑜 𝑓 𝑛𝑜𝑑𝑒
  , where the 

𝑛𝑜𝑑𝑒 is in the shortest path from the functional domain of the 𝑉𝑆 to the parent of 

that of the 𝑉𝑀 in function dimension; (3) if the 𝑉𝑆 belongs to the Type-II evidence, 

𝜆 =  −1. 

• Evidence Combination and Fusion Computing. The integrated evidence is firstly 

computed on the basis of predefined methods in analysis dimension. Different from 

the approach stated in Section 3.4.3 that focuses on combination and fusion in a 

single loop, the extended approach concerns about computed results across multiple 

loops towards never-ending learning. Hence, the computing results of these evidence 
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are fused continuously to measure the uncertainty distribution 𝜏 of brain functions 

on various patterns (such as brain regions and/or network nodal information) 

underlying the goal hypothesis [162], which is given by: 

        𝜏𝑙𝑜𝑜𝑝 = ∑ 𝜆(𝑉𝑖)  ×  𝑀𝑎𝑠𝑘(𝐺𝐻𝑃)  ×  𝑅(𝑉𝑖)
𝑁𝑙𝑜𝑜𝑝
𝑖=1

               (3.6) 

where 𝑁𝑙𝑜𝑜𝑝  is the number of evidence that will be fused by the intersection of 

computing results in a loop, 𝜆(𝑉𝑖)  indicates the weight coefficient of the 𝑖𝑡ℎ 

evidence, 𝑀𝑎𝑠𝑘(𝐺𝐻𝑃)  indicates the mask of patterns of interest from the goal 

hypothesis, 𝑅(𝑉𝑖) indicates the computing results of the 𝑖𝑡ℎ evidence. 

• Never-ending Learning (NEL). The never-ending learning is realized by the human-

centric K-I-D loop to meet multi-aspect brain computing requirements. During this 

process, the new experiments, together with new evidence, are designed and analyzed 

by evidence combination and fusion computing to test the goal hypothesis 

continuously. More specifically, along with iteration and evolution of the loop, the 𝜏 

distribution is calculated and updated to interpret the multi-layer specificities of the 

brain functions on various patterns, which is given by: 

                     𝜏𝑁𝐸𝐿  =  ∑ 𝜏𝑙𝑜𝑜𝑝
∞
𝑙𝑜𝑜𝑝=1        (3.7) 

where 𝜏𝑁𝐸𝐿 indicates the 𝜏 distribution obtained by the cumulation of 𝜏𝑙𝑜𝑜𝑝 from 

various loops. Theoretically, as the brain data is continuously acquired, the learning 

process can be performed forever. In addition to this mechanism, an end condition is 

also designed to ensure expected results that can be observed. For more details, the 

𝜏 distribution obtained by the Type-II evidence in a certain loop is used to exclude 

those parts where there is overlapping with the cumulative 𝜏𝑁𝐸𝐿, until the 𝜏𝑁𝐸𝐿 is 

empty. 
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• Translational Applications. Considering to the potential relationships between brain 

patterns and clinical outcomes, the learned multi-aspect patterns from the general 

intelligence model might provide insights into brain mechanisms of disease arises. 

Hence, it can support to develop individualized diagnosis and treatment plans for 

different groups with various substates of cognitive impairments. Furthermore, the 

learned brain patterns could guide feature extraction and selection, combining with 

computational neuroscience methods to realize the prediction and recognition of 

abnormal conditions. 

3.6 Prospective 

An intelligence system is concerned with not only self-learning and evolving 

capabilities, but also realizing interactions within and across different domains/scenarios. 

Figure 3.13 illustrates the collaborative mechanisms and applications of the proposed 

general intelligence model in the connected SCP spaces. More specifically, the basic 

model provides the initial mode and interface that can be personalized in different 

scenarios. People can fill the content of interest and set personalized parameters in such 

a basic model. For example, the resources organized in the K-I-D architecture can be 

adjusted to match never-ending learning of other scenarios. The goals and hypotheses can 

be designed to drive model learning, through binding the scope, concept and parameter 

of the conceptual Data-Brain. In the future, these personalized models can be 

interconnected into a network. Owing to the same mode, they can realize smoother 

interactions and more productive collective learning. It involves different developing 

directions: the systematic brain computing for brain investigation and the multi-

dimensional services in the connected world. 
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Figure 3.13: Collaborative mechanisms and multi-dimensional services of the general 

intelligence model. The multiple sources are organized into a three-layered architecture 

surrounding knowledge graphs, wealthy information, and massive data; the KID and DIK 

schemes are connected into a cycle as the thinking space, namely the K-I-D loop, for brain 

computing with conceptual Data-Brain driven systematic fusion; the never-ending learning 

characteristic hidden in the K-I-D loop drives the continuous iteration and evolution of the 

platform; the social-cyber-physical interfaces ensure interactions within and outside the platform, 

and working collaboratively across multiple domains/scenarios to provide the multi-dimensional 

smart health services. 

 

3.6.1 Systematic Brain Computing Based on the GIM 

The self-process of learner reflects the ability to work and learn independently. As 

shown in Figure 3.14, the general intelligence model-based brain computing platform 

provides such never-ending learning ability that generates new knowledge and findings 

through active learning and heuristics in the thinking space. Its working processes are as 

follows: during the online phase, the brain computing platform responds to user input, 
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including the goal hypotheses provided by an investigator. A systematic experimental plan 

is generated based on Algorithm 3.1, followed by integrating data, information and 

knowledge from multiple sources for multi-aspect analysis and inference. On the basis of 

the above, the multi-level uncertainty distribution 𝜏  is computed and inferred; the 

support coefficient 𝛾  is given; and more new experimental plans are continuously 

recommended to meet requirements of an investigator. During the offline phase, the 

systematic experimental plans are automatically designed to explore brain specificity for 

a certain hypothesis based on random combinations of factors in function dimension and 

experiment dimension from the conceptual Data-Brain. Alternatively, a systematic 

experimental plan can also be expanded based on the data-driven approaches that rely on 

the local storage data and linked external data sources. 

Furthermore, the general intelligence model is composed of the KID and DIK schemes 

that constitute the complementary mechanism for never-ending learning. Under the KID 

scheme of knowledge-driven learning, the knowledge layer guides the systematic 

processes from experimental designing to acquisition, combination and inference of 

relevant evidence at the data layer (including the first-hand data of remaining original 

states) and the information layer (including second-hand data of published results and 

electronic medical records). Conversely, under the DIK scheme of data-driven learning, 

the brain computing results of data and information layers are regarded as the clues to 

inspire new systematic experimental design for further analysis and practice. 

 



3.6 Prospective 103 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

 
Figure 3.14: The architecture of the multi-source brain computing platform. The conceptual Data-

Brain is organized by interconnected four dimensions from the function, experiment, data and 

analysis; brain big data is organized into semantic vectors with provenances for meeting dynamic 

requirements of brain computing; multi-source knowledge, information and data are driven by 

three operations, namely designing, sampling and analyzing, for implementing systematic 

experimental plans, systematic data sampling and fusion, as well as systematic analysis and 

inference with uncertainty, respectively. 

 

3.6.2 Multi-dimensional Services in the Connected World 

We present two scenarios of the wisdom service within the virtual world including the 

brain cloud platform and the healthcare assistant system, as shown in Figure 3.15. Cloud 

computing promotes globally cooperative mechanisms and resource-sharing 

arrangements to generate and test theories of brain function and dysfunction for 

accelerating brain science discovery [205]. For instance, the IEEG.org provides a cloud 

platform for sharing, visualizing and analyzing of data from multiple file formats (e.g., 

imaging data combined with electrophysiological data and patient metadata) [206]. The 
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MRICloud provides cloud-based services for automated brain MRI segmentation and 

analytical tools for quantification via distributed client-server remote computation and 

Web-based user interfaces [207]. When Data-Brain driven general intelligence model 

meets cloud computing as a brain cloud platform, a greater power will be exerted [161].  

 

 

Figure 3.15: The multi-dimensional services of Data-Brain driven general intelligence model. 

The services are provided from two perspectives: A. The Data-Brain-supported systematic brain 

investigations, and B. The Data-Brain-supported versatile services. 

 

In the current scenario, the brain cloud platform covers the multidimensional service 

modes supported by Data-Brain driven general intelligence model with the Data-

Information-Knowledge-Wisdom hierarchy and intelligent agents in different 

circumstances, which is the extended version of the Wisdom as a Service (WaaS) in the 

W2T architecture [167]. Its five service dimensions are described as follows: 

• Data as a Service (DaaS) provides services based on both the historical data and 

ongoing data streams, in which the data is the raw or preprocessed quantities and text, 



3.6 Prospective 105 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

as well as data in multi-media, multi-modal and multi-scale collected, stored, and 

transmitted throughout the whole life cycle; 

• Information as a Service (IaaS) provides services by using both static display and 

dynamic response modes, in which the information is a collection of interpreted, 

structured or organized items that are significant and useful for a certain specific 

request; 

• Knowledge as a Service (KaaS) provides services with respect to existing and will-

be-refined explicit knowledge, such as knowledge graphs, user models, facts, truths 

or principles gained through a specific request; 

• Thinking as a Service (TaaS) provides services to support various human creativity 

related activities, in which the thinking is sagacity, discernment or insight to know 

what is true or right for making correct judgments, reasoning, decisions and actions; 

• Robot as a Service (RaaS) provides customized, personalized and collaborative 

services for various physical scenarios, in which the robot can perceive the 

internal/external context and make intelligent responses autonomously. 

The social interactions, cyber correlations, physical perceptions and thinking 

communications can be intertwined in the interconnections among ubiquitous things, 

which realize a smart fusion of the SCP spaces. Brain computing in the connected world 

is supported by not only the interactions and integration of data, information and 

knowledge, but also the interconnections related to the web of people, things and 

machines with respect to WI. In this context, brain computing with the thinking space 

should consider its role in the SCP spaces to develop multi-dimensional services, 

including human–human, human–machine and machine–machine interactions, which are 

described as follows: 
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• Human–Human Interaction (HHI). For physical interactions, the multi-person non-

invasive direct brain-to-brain communication is presented to increase human 

performance by sharing intelligence [208] or drive collective intelligence for 

collaborative problem solving [209]. For thinking interactions, the ideas spread 

among people through social behaviors, which are affected by brain activity and 

structure [210]. 

• Human–Machine Interaction (HMI). For physical interactions, interfacing brain-

inspired devices with the real brain is established to restore and enhance organ 

function in vivo through the neurobiohybrids [211]. For thinking interactions, the 

humanin-the-loop mechanism is used to create natural artificial intelligence 

algorithms and models, by which the learning and simulation processes leverage the 

power of machine and human intelligence [201]. 

• Machine–Machine Interaction (MMI). As machines have no thinking and ethics like 

human beings, stricter control is required to address the challenges of privacy 

protection and data security. Machine–machine interactions usually occur in the 

processes of data fusion that reflects the multi-dimensional characteristics, such as 

the data exchange among multi-center/multi-site [212]. Currently, federal learning 

may be the best practice to mitigate the possible risks caused by data behaviors 

between machine and machine [213, 214]. 

To achieve the goal, the Wisdom Web of Things has been developed as a core of 

interconnections among the ubiquitous things with big data in the social-cyber-physical 

spaces. As a wisdom aspect, the current brain computing platform can be an application 

in individual smartphone to dynamically access health information, by which the 

personalized models are constructed and the collective intelligence is realized by the 
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interconnected people. For another, by leveraging the systematic Brain Informatics 

methodology and integrated data, information and knowledge from the interconnected 

virtual or/and physical entities, the current brain computing platform has achieved multi-

source fusion on evidence level for decision-making support. Taken together, these 

applications have provided great expectations to be involved in the revolutionary process 

from traditional health to smart health, as well as meet healthy ecosystem demands 

intelligently. 

3.7 Conclusion 

In this chapter we theoretically study the important problem of the general intelligence 

for brain science. We show that handling complex brain comping tasks need the 

systematic behavioral modeling. Likewise, a Data-Brain driven general intelligence 

model is proposed to give multi-aspect understanding of brain function and health, 

directed by brain informatics and general intelligence theories. We believe that the general 

intelligence model will be widely applied to various scenarios and promote the progress 

of brain intelligence and health. 
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Chapter 4 

                                                                                   

 

 

GIM Analysis I: Functional Segregation in the 

Brain 

 

In Chapter 4, we apply the general intelligence model to analyze the brain information-

processing mechanism from the segregation perspective. In the experimental part, the 

human reasoning-centric brain patterns are investigated to validate the model 

performance. Neuropsychological investigations have traditionally divided human 

reasoning into two categories, induction and deduction, based on the type of relationships 

between the premise and the conclusion. Here, the inductive reasoning mechanisms is 

investigated by using Data-Brain driven general intelligence model. 

 

4.1 Introduction 

Reasoning is one of the uniquely human cognitive processes, using existing knowledge 

to draw conclusions, make predictions, or construct explanations [215, 216]. Three 

classes of reasoning separately represent different problem-solving strategies, including 

the inductive, deductive and abductive approaches. More specifically, the inductive 

reasoning involves inferring underlying relations from observations that are limited in 
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scope, which is a process from special instances to general rule [217]. The deductive 

reasoning requires inferring a guaranteed conclusion from given information, which is a 

process from general rule to the specific application [218]. 

Recent advances in neuroimaging have augmented numerous findings in the human 

reasoning process but have yielded varying results. Based on neuroimaging methods and 

mental model theory, Osherson et al. revealed diverging brain region activations for 

inductive (such as, right-sided posterior and bilateral frontal activation, visual cortex, 

right superior parietal lobule and thalamus) and deductive (such as, left dorsolateral 

prefrontal cortex and right insular cortex) reasoning [219]. Goel and colleagues showed 

that inductive tasks mainly engage the left medial frontal gyrus, the left cingulate gyrus, 

and the left superior frontal gyrus (Brodmann areas 8, 9, 24, 32), whereas deductive tasks 

draw on the left inferior frontal gyrus (Brodmann areas 45, 47), indicating mainly 

prefrontal differences between reasoning types [220, 221]. Parsons and Osherson 

discovered hemispherical differences between reasoning types, showing that inductive 

reasoning engages the left hemisphere (specially for the prefrontal areas and the cerebellar 

Bergmann glia) and deductive reasoning engages the right hemisphere (activation in the 

language-dependent areas and the limbic system) [222]. Moreover, meta-analyses have 

been conducted, showing that several regions (such as, the left inferior frontal gyrus, the 

precentral gyrus, the superior frontal gyrus, the bilateral middle frontal gyrus, the bilateral 

superior parietal lobule, the right precuneus, the left inferior parietal lobule, the right 

superior occipital gyrus and the left frontopolar cortex) were reported to be actively 

involved in inductive reasoning [216, 217, 223]. The quantitative meta-analysis method 

of neuroimaging studies has also been conducted to investigate deductive reasoning, 
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showing that the right middle frontal gyrus, the left medial frontal gyrus and the bilateral 

posterior parietal cortex were actively involved [224]. 

4.2 Problem Statement 

Although reasoning has been studied for the past 70 years, its brain information-

processing mechanisms are still not sufficiently understood [225]. One of the most 

fundamental questions is to answer the core neural underpinnings of a specific reasoning 

type. One possibility for this challenge is that reasoning, whether inductive and deductive, 

is involved in multiple mental processes which dynamically interact with each other, 

being intrinsic to human high-level cognition [215]. Existing knowledge in inductive 

reasoning showed its complex interactions with the basic cognitive processes, such as 

attention, memory, executive functions and symbolic processing [226, 227]. Furthermore, 

the inductive reasoning also encompasses intricate cognitive subcomponents, such as rule 

identification and extrapolation [228]. Taken together, a global picture of reasoning from 

the intra- and inter-perspectives of cognitive function can be given in Figure 4.1. 
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Figure 4.1: The human reasoning-centric constituent elements and its correlation distribution in 

the complex cognition space. 

 

Furthermore, the complexity of the study to human reasoning is also closely related to 

the experimental design. For example, several studies were performed to investigate the 

neural underpinnings of inductive reasoning using different types of tasks, including 

sentential [229-231], figural [232] and numerical [228] tasks [233]. More specifically, 

number series completion is a classical task which has been widely used to the study of 

inductive reasoning. Studies indicate that solving number series problems needs to 

undergo four stages (including encoding, rule identification, rule application and respond), 

which involve different cognitive subcomponents of reasoning [87, 234]. As such, a single 

experiment with limited conditions is difficult to give a full picture of reasoning. It is 

urgent and necessary to provide the combination and comparison methods about fusion 

computing of multiple experiments. 



4.3 Brain Localization Study Based on the GIM with HITL 113 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

4.3 Brain Localization Study Based on the GIM with HITL 

For the purpose of presenting the systematic brain computing within the GIM, two sets 

of experiments are conducted. Our goal is to validate the abilities of systematic 

experimental design and brain function decoding along with the K-I-D loop. In particular, 

the evidence combination and fusion computing method is presented to infer the uncertain 

distribution of mental processes on the voxel-based level and give multi-aspect 

interpretations. All computing processes and results are illustrated through the 

implementation of multi-source brain data related to the task-state fMRI. To realize these 

goals, the knowledge, information and data layers are constructed first. 

The knowledge layer is the conceptual Data-Brain that consists of function dimension, 

experiment dimension, data dimension and analysis dimension, which is illustrated in 

Figure 3.4. The information layer bridges between the knowledge and data layers, 

cooperating with the semantic vectors for the data provenance and the analysis 

provenance. The data layer is the sample library in which each sample is mapped into the 

standardized Data-Brain space illustrated in Section 3.3.1, including paradigm class, 

explicit stimuli, conditions, original data and results of studies and so forth. It maintains 

private data on local servers and builds the channel to communicate with global open 

sources in the connected SCP spaces. Table 1 in Appendix A shows a fragment of the 

sample library for several key properties. Hence, the semantic vector in the information 

layer can systematically integrate multi-angle brain resources to meet each round of the 

specific computing requirements. Additionally, the data layer achieves sustainable growth 

along with scientific literature and open resource that is regarded as the primary 

information source. In this case, the natural language processing techniques and the text 

mining methods are used to extract formal information and knowledge as external 
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evidence for the needs of systematic brain computing. To illustrate such an issue, some 

functionality modules related to Neurosynth and BrainMap are integrated into the general 

intelligence model. It is worth noting that any function similar to these existed platforms 

can be integrated into the current model, which offers an extensible performance. The raw 

fMRI data are obtained, followed by a unified preprocessing pipeline that is operated 

within SPM12 software (the Wellcome Centre for Human Neuroimaging, London, UK, 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). These procedural data, which are 

intermediate results produced by data preprocessing, are also stored in the data layer for 

possible pattern and indicator analyses in the future. 

4.3.1 Experiments 

In this case, the brain localization and its relevant mental processes are studied by 

using the general intelligence model with human-in-the-loop. To achieve this goal, the 

general framework is reconstructed to a specialized model towards the human brain 

mapping study. This model is driven by both KID and DIK inference schemes, by which 

systematic experimental design, evidence combination and fusion computing-based 

uncertainty inference are achieved. Suppose an intent is to explore the roles of particular 

brain regions in mental process related to a dual task of calculation and emotion, using 

picture stimuli. In this context, an experiment is regarded as the main experiment 𝑇𝑚𝑎𝑒 

that is able to induce such effects of calculation and emotion simultaneously. In this case, 

the main experiment is matched from the sample library. Once the 𝑇𝑚𝑎𝑒 is determined 

and its corresponding data is obtained, the K-I-D loop will be activated to execute 

systematic fusion computing and uncertainty inference for which the details are described 

as follows. 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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For the KID scheme, the main experiment-centric multiple supplementary experiments 

are designed based on Algorithm 3.1, followed by sampling the task-state fMRI data and 

their processed results from the sample library to fill the systematic experimental graph. 

The contributions of various supplementary experiments are configured to 𝜆1  =

 1, 𝜆2  = 0.7, 𝜆3  =  0.5, 𝜆0  =  0, 𝜆4  =  −0.5, 𝜆5  =  −0.7, 𝜆6  =  −1 , respectively. We 

expect that all nodes in such a systematic experimental graph are filled with the original 

fMRI data. Then, the sampled fMRI data can be computed through the integrated 

multivariate pattern analysis with Searchlight [235] and univariate analysis with GLM 

[236]. Practically, however, it is hard to fill all nodes with original fMRI data. In this case, 

the meta-analysis results of scientific literature are regarded as external evidence to fill 

the node without original fMRI data, for which the meta-analysis interface of Neurosynth 

is called. Finally, a novel brain mapping, namely uncertainty distribution mapping, is 

generated to further interpret the brain computing results of the current 𝑇𝑚𝑎𝑒  from 

univariate and multivariate analyses, for which the systematic experimental design 

method is implemented by the 𝑇𝑛𝑒𝑥𝑡 − 𝐶𝑎𝑙𝑙 rules defined in Section 3.4.2. For the DIK 

scheme, the brain computing results of the 𝑇𝑚𝑎𝑒 are regarded as the heuristics to select 

more experimental tasks, for which the activation coordinate experiment-wise search 

function of BrainMap is called. In the future, more expanded experimental plans are 

generated to extend brain computing and interpretations from more perspectives. 

4.3.2 Results 

Figure 4.2A shows the results during the processes of systematic experimental design 

and data sampling from the sample library. Since the requirement of exploring the picture 

task related to both emotion and calculation processes, the 𝑇𝑚𝑎𝑒 such as the emotional 

arithmetic task is matched on the basis of function dimension and experiment dimension. 



4.3 Brain Localization Study Based on the GIM with HITL 116 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

Hence, the original data D3 summarized in Table 1 of Appendix A is given from the 

sample library. In the following, a series of supplementary experiments are designed to 

fill the template graph of systematic experimental plans, including the 𝑇𝑠𝑝𝑒  such as the 

mental arithmetic task with the original data D6 as internal evidence, the 𝑇𝑑𝑒𝑒 such as 

the memory task with the statistical maps E2 as external evidence, the 𝑇𝑖𝑛𝑒 such as the 

reasoning task with the original data D4 as internal evidence and the 𝑇𝑚𝑖𝑒 such as the 

language task with the statistical maps E3 as external evidence.  

Figure 4.2B gives one of the multi-aspect analyses and inference results for uncertainty, 

under such a KID process. On the one hand, the first analytical aspect is based on the 

statistical parametric technique, which is the group-level analysis to examine the brain 

activation differences in the hypothesized superior frontal gyrus (SFG) subregion 

between the emotional stimuli and the dual-task stimuli of both emotion and calculation 

operations. As shown in Figure 4.2B(a), the color bar indicates z-values where 𝑧 ≥ 1.96. 

On the other hand, the Searchlight method is executed to obtain the brain computing 

results for the hypothesized brain region as shown in Figure 4.2B(b), where the radius is 

5 voxels. Such computing processes are applied to all internal evidence. Taken together, 

the uncertain distribution mapping is shown in Figure 4.2B(c) that fuses the internal (from 

the univariate and multivariate analyses) and external (from the meta-analysis results with 

topics of ‘memory’ and ‘language’ in the Neurosynth platform) evidence to extend 

interpretations of these results from the single-task computing view. 

Figure 4.2C gives a new recommended plan under such a DIK process. It can be seen 

that the tasks of 𝑇𝑠𝑝𝑒  and 𝑇𝑖𝑛𝑒  have been changed to others, such as the emotional 

pictures task inspired by the external evidence (based on the BrainMap platform) and the 

emotional face recognition task from the internal evidence (the D2 summarized in Table 
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1 of Appendix A), respectively. The new experimental plan is used to guide further 

practice. 

4.3.3 Discussions 

Although the statistical test and machine learning approaches have proven successful 

in the selection of brain specificities, it is hard to provide better global understanding of 

the complex many-to-many structure–function relationships with great uncertainty, 

particularly facing brain computing results underlying a single experimental task. For 

instance, the selected regions as shown in Figure 4.2B(a) and (b) are usually regarded as 

the ROIs with more wealthy information related to a certain mental process through the 

contrast of multiple conditions in a single task. As it is hard to interpret more 

characteristics of such ROIs that are extracted based on a single task, this study presented 

the evidence combination and fusion computing approach during such a KID scheme. 

Hence, the multi-source evidence with different task characteristics can be modeled and 

fused systematically to compute the uncertainty distribution mapping. Finally, the 

uncertainty values are used to interpret multi-aspect brain functions for those given ROIs. 

For example, the brain region revealed by the analysis of uncertain distribution (see the 

circled voxels in Figure 4.2B(c)) is localized at the so-called SFG subregion (MNI 

coordinates of the peak voxel: −21, 30, 42). Besides the brain activation related to the 

current 𝑇𝑚𝑎𝑒-related mental process, the SFG is also an important region implicated in a 

variety of mental processes including working memory, cognitive control, attention, 

motor control and creativity [237-239]. Lesion studies also showed that impairment in 

the left SFG could result in a working memory deficit, and the impairment increased with 

the complexity of the tasks (on domains of verbal, spatial, face) [69]. In this case, since 

the memory-based evidence is selected and fused into the systematic brain computing 
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process as shown in Figure 4.2A, it can provide deeper insights into the regions 

surrounded by the circle as shown in Figure 4.2B. The interpretation with respect to 

uncertain distribution coincides with many of the earlier studies. Furthermore, in order to 

further interpret regional neural activities, more evidence needs to be obtained by more 

heuristic experiments. Such computing ability can be provided by such a DIK scheme, as 

shown in Figure 4.2C, and then a new round of the K-I-D loop is activated. 
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Figure 4.2: The functional specialization-oriented analysis results of the HITL interactive 

learning and inference in the GIM. A. The results of systematic experimental design (𝑆𝐸𝐷) and 

data sampling during the KID process: First, various tasks are matched from the sample library 

and then are filled in the experimental template graph; second, the raw data/processed results are 

extracted by multiple 𝑆𝑉𝑠. B. An example of systematic analysis and inference: (a) and (b) show 

the standard ROI analysis strategies from the single-task view. (c) shows the results of uncertainty 

analysis and inference based on multi-task evidence combination to provide more interpretations. 

For instance, the circled voxels, implicated in a variety of tasks such as working memory, 

cognitive control and attention, are localized at the so-called SFG subregion (MNI coordinates of 

the peak voxel: −21, 30, 42). Additionally, several mental disorders also show the dysfunction in 

this region, such as depression, psychiatric and affective disorders. C. The results of data-driven 

experiment expansion during the DIK process: First, the brain computing results corresponding 

to the main experiment are given by data sampling; second, new tasks can be from the external 

evidence and sample library through comparison of the brain computing results between new 

tasks and the main experiment; third, the previous experimental plans are updated with the new 
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tasks through the 𝑇𝑛𝑒𝑥𝑡 − 𝐶𝑎𝑙𝑙 rules for future practice. Internal evidence: Emotional face 

recognition task (EFT), Emotional arithmetic task (EAT, D3), Mental arithmetic task (MAT, D6), 

Inductive reasoning task (IRT, D4). External evidence: Memory task (MMT, E2), Language task 

(LGT, E3), Emotional pictures task (EPT). 
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4.4 Brain Localization Study Based on the GIM with HITL-

Aided NEL 

To obtain an answer A for a specific question Q (such as “which brain regions are 

involved in the inductive reasoning process?” and “which information related to cognitive 

functions can be more processed by a specific brain region”), the general intelligence 

model performs never-ending learning within iterative loops. More specifically, the 

model interacts with sample library for extracting evidence by inference engine. The 

single evidence can be computed by univariate and multivariate analyses, followed by 

preprocessing for fMRI. Increasing with the new evidence, the results will be updated 

continuously by evidence combination and fusion computing within the model. All of 

them are presented in Figure 4.3. 

 

 

Figure 4.3: The general intelligence model applied to brain research on functional specialization. 

 

On the one hand, we conduct internal evidence learning to realize multi-aspect 

analyses at brain region scales, then realizing systematic fusion based on experimental 
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and evidential modeling. On the other hand, we conduct external evidence learning to 

enrich a sample library by combining with meta-analysis methods to realize autonomous 

learning from brain imaging results across the scientific literature 

4.4.1 Experiments 

To demonstrate that the approach can systematically model and interpret the human 

brain function, the human reasoning centric never-ending learning was conducted. A test 

comes from the analysis of fMRI-related resources. This case study was performed to 

answer the question about ‘The casual relationships between inductive reasoning and the 

dorsolateral prefrontal cortex (DLPFC)’. The investigators first set up parameters related 

to the four dimensions of conceptual Data-Brain, such as functional domain “inductive 

reasoning”, experimental paradigm “factorial design”, experimental protocol “block 

design”, explicit stimuli “digits, letters”, data object “fMRI”, analytical method “GLM 

analysis and Searchlight”, as shown in Figure 4.4. The general intelligence model is 

driven to select, process, analyze and fuse evidence from the sample library. These 

parameters are taken as the clue to design main experiment in the first loop, and then 

provide inspiration to select and compute parameter-matching evidence from the sample 

library. In line with the design principle of the main experiment, the supplementary 

experiments are sampled and computed continuously to realize never-ending learning. 
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Figure 4.4: Reconstruction of the conceptual Data-Brain for the human reasoning-oriented brain 

localization study. During the human-in-the-loop (HITL) procedure, the conceptual Data-Brain is 

specified by users with the parameters of interest. Hence, the internal and external evidence are 

integrated into the general intelligence model by extracting resources from the sample library 

drawn from functional neuroimaging studies and associated data. 

 

The internal evidence is mainly involved in the task-state fMRI data, which includes 

various experimental factors and so forth. For a raw fMRI data, it was processed by a 

unified pipeline that is operated within SPM12 software and fMRIPrep [240, 241]. These 

pipelines include most of the preprocessing tools currently available for fMRI 

investigation: (1) slice-timing correction; (2) estimation of rigid-body motion; (3) co-

registration of the anatomical image in the Montreal Neurological Institute (MNI) space; 

(4) individual co-registration between anatomical and functional images; (5) resampling; 

(6) spatial smoothing with an isotropic Gaussian kernel; (7) temporal filtering. The 

procedural data, which are intermediate results produced by data preprocessing, are also 

stored in the data layer for possible pattern and indicator analyses in the future. Then, the 

sampled fMRI data are computed through the integrated the multivariate pattern analysis 

with Searchlight [235] and the univariate analysis with GLM [236]. 
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In the stage of external evidence learning, we collected published neuroimaging papers 

from the open-access PLOS series of journals and PubMed. Only reasoning related 

neuroimaging papers were searched by using the keywords “(reasoning) AND (fMRI) 

OR (reasoning) AND (functional MRI) OR (reasoning) AND (functional magnetic 

resonance imaging) OR (inductive reasoning) AND (fMRI) OR (inductive reasoning) 

AND (functional MRI) OR (inductive reasoning) AND (functional magnetic resonance 

imaging) OR (deductive reasoning) AND (fMRI) OR (deductive reasoning) AND 

(functional MRI) OR (deductive reasoning) AND (functional magnetic resonance 

imaging)”  in full text. For this study, we searched reasoning-related evidence on this 

sample library based on the topic words “reasoning”. Thirty-two papers are obtained as 

shown in Table 2 of Appendix A. 

4.4.2 Results 

While the parameters were set up within the human-in-the-loop, the sample 𝐷81 in 

LOOP-1 (a sample for inductive reasoning study using the numerical serial complement 

task with factorial and block design) with the greatest expectation of experimental 

characteristic was extracted from the sample library (the details of sample library are 

listed in Appendix A.). Next, the supplementary experiments from LOOP-2 to LOOP-9 

were extracted continuously during the never-ending learning process, as shown in Figure 

4.5. Considering the intra- and inter- analyses, these samples were further identified as 

different evidential types to support evidence combination and fusion computing. In this 

case, the six samples (including D82, 𝐷1, 𝐷4, 𝐷71, 𝐷51 and 𝐷52) were designed as the 

Type-I, conversely, the other two samples (including 𝐷6 and 𝐷72) were designed as the 

Type-II. 
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Figure 4.5: The sampled brain data under the never-ending learning process of the brain 

localization for reasoning. 

 

These extracted samples were further processed by a KID and DIK schemes. On the 

one hand, the KID schemes were activated to realize hypothesis-based evidence 

combination and fusion computing. Within each loop, the task-state fMRI data was 

analyzed to obtain the significant brain regions at group-level by statistical methods (p < 

0.05, FPR corrected, with a minimum cluster size of k > 10 voxels, in MNI space), 

followed by the contrasts that were created individually based on the GLM framework. 

As shown in Figure 4.6, the significantly activated brain regions were acquired by 

analyzing the 𝐷81 sample in LOOP-1, reveling by the contrasts of ‘numerical inductive 

reasoning > perceptual judgment’ within a numerical serial complement task. Regions 

that showed increased activation during the numerical inductive reasoning were found in 

the middle frontal gyrus, the superior parietal gyrus, the middle frontal gyrus, the inferior 

parietal lobules and the middle occipital gyrus, with coordinates of peak (-40, 29, 32),  

(-29, -80, 37), (-29, 18, 46), (-48, -46, 46) and (35, -69, 46), respectively. 

As shown in Figure 4.7, the significantly activated brain regions were acquired by 

analyzing the 𝐷71 sample in LOOP-5, reveling by the contrasts of ‘numerical inductive 

reasoning > perceptual judgment’ within another numerical serial complement task. 

Regions that showed increased activation during the numerical inductive reasoning were 
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found in the superior parietal gyrus, the middle occipital gyrus, the inferior parietal 

lobules, the supplementary motor area and the superior parietal gyrus, with coordinates 

of peak (-29, -65, 32), (-25, -95, -7), (-48, -46, 51), (5, 21, 46) and (31, -65, 27), 

respectively. 

As shown in Figure 4.8, the significantly activated brain regions were acquired by 

analyzing the 𝐷72 sample in LOOP-9, reveling by the contrasts of ‘numerical calculation > 

perceptual judgment’ within a mental arithmetic task. Regions that showed increased 

activation during the calculation process were found in the superior parietal gyrus, the 

supplementary motor area, the middle occipital gyrus, the inferior frontal gyrus 

(triangular part) and the superior frontal gyrus (dorsolateral), with coordinates of peak 

(20, -65, 60), (-7, 10, 51), (-33, -88, -2), (-48, 33, 22) and (35, -5, 61), respectively. 

By fusing these brain activation regions we found, the τ distribution was computed to 

gain a renewed understanding of what has observed brain regions during the KID loop. 

As shown in Figure 4.9, the τ distribution of peak coordinates changed in the intermediate 

learning process. From LOOP-1 to LOOP-7, the τ values became bigger according to the 

accession of Type-I evidence. It suggests that more and more evidences support our 

hypothesis of the close relations of the selected brain regions and inductive reasoning, not 

merely the evidence from the main experiment. From LOOP-8 to LOOP-9, the τ values 

became smaller according to the accession of Type-II evidence. It suggests that such 

regions broadly participant in various mental process, not merely inductive reasoning 

from the current goal hypothesis. From LOOP-1 to LOOP-9, some centers of brain 

regions still experienced fluctuations, such as c2 (-48,30,20) and c4 (-50, 30, 22), but 

some regions showed more stable trends, such as c1 (46,12,30), c3 (-52,24,26), c5 (-36,  

-32, 50) and c6 (36, -24,46). 
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Figure 4.6: The computing results of brain activation patterns for inductive reasoning in LOOP-

1. 



4.4 Brain Localization Study Based on the GIM with HITL-Aided NEL 128 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

 

Figure 4.7: The computing results of brain activation patterns for inductive reasoning in LOOP-

5. 
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Figure 4.8: The computing results of brain activation patterns under the calculation process in 

LOOP-9. 
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Figure 4.9: The uncertainty distribution of brain activation regions in each loop of the never-

ending learning process.  
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At the same time, the DIK scheme also were executed during the process of never-

ending learning. For each newly acceding evidence, the cognitive content of frontal lobe 

was decoded by the multivariate pattern analysis methods from brain activity. Through 

fusion computing, the support degree was acquired in reasoning with 1.344, and 

calculation with 1.387, as shown in Figure 4.10. 
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Figure 4.10: The casual inference for interpretations of the goal hypothesis with brain regions 

and cognitive functions. The left part gives the brain computing results in the task-driven KID 

inference process, which shows the DLPFC is activated by these inductive reasoning-oriented 

tasks. Conversely, the right part gives the brain computing results in the data-driven DIK inference 

process, which shows the DLPFC also plays a core role in inductive reasoning. Hence, integrating 

results of the KID and DIK inference processes realizes the ability to interpret the casual effects 

of brain structure and function. 

 

We further examined the extensible capability of Data-Brain driven never-ending 

learning, which integrates multi-source and multi-level evidence from internal and 

external sides to realize learning and modeling of larger scale brain data. The learned 

results to reasoning are shown in Figure 4.11. 
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Figure 4.11. Never-ending learning of internal and external evidence for systematic 

understanding of reasoning. A. The designed experiments from loop 1 to loop 11 based on the 

combination of internal and external evidence towards never-ending learning of brain region 

patterns. B. On the basis of internal evidence learning, some finer-grained changes to peak 

coordinates and uncertainty distribution can be found during the combination of external. 
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4.4.3 Discussions 

Because the brain mechanisms of high-level cognitive function remain vague, we 

decided to conduct a general intelligence model of never-ending learning to clarify these 

issues. This is necessary to foster research in the field of cognitive neuroscience because 

the current neuroimaging studies about a specific cognitive function do not covey a 

consistent pattern so far. Hence, more insights into the neural and cognitive mechanisms 

of cognitive functions and their variations concerning task setup and content are necessary. 

In this case, Data-Brain driven never-ending learning interpreted the specificity of human  

reasoning within various brain regions. In particular, with respect to inductive reasoning, 

several regions such as the left inferior frontal gyrus, precentral gyrus, superior frontal 

gyrus, bilateral middle frontal gyrus, right precuneus, left inferior parietal lobule and left 

occipital gyrus were identified as the significantly relevant brain regions (see Figure 4.9 

for results) [216]. In addition, Data-Brain driven never-ending learning also highlights 

the important role of some regions such as left middle temporal gyrus, right inferior 

temporal gyrus, fusiform gyrus, bilateral angular gyrus and right cerebellar lobules-Crus 

I, which have not been actively reported in previous studies. Together, the integrated 

experiment from the internal and external evidences demonstrates the reliable and robust 

performance of Data-Brain driven never-ending learning in elucidating the complex 

cognitive functions. 

As shown in Figure 4.10, the support degrees of reasoning and calculation are similar. 

One of the reasons is that the current evidence is mainly from the numerical serial 

complement task, which involves cognitive component of calculation. By using the 

Bayesian model-based neuroimaging meta-analysis method of the cortical surface, Shin 

et al. shown a map of common activations during inductive and deductive reasoning, with 
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respect to a pattern of activity extending over a specific set of regions, particularly in the 

dorsolateral prefrontal cortex (8C and p9-46v), orbital and polar frontal cortex (a47r), 

insular and frontal opercular cortex (AVI), paracentral lobular and mid cingulate cortex 

(SCEF), and anterior cingulate and medial prefrontal cortex (8BM) in the left hemisphere 

[216]. 

4.5 Conclusion 

  In this chapter, we empirically study the important problem of learning brain patterns 

from the functional segregation perspective. We perform the inductive reasoning-centric 

brain activation pattern analyses based on the general intelligence model. We believe our 

results take an important step towards understanding human reasoning, and also stimuli 

future work on the design of cognitive experiments. 

  



 

 

Chapter 5 

                                                                                   

 

 

GIM Analysis II: Functional Integration in the 

Brain 

 

Complementing this effort to decode the complex brain from human brain mapping, 

the properties of both intra- and inter- regional connectivity provide another view to 

promote our understanding of the brain as a complex network. In Chapter 5, we apply the 

general intelligence model to analyze the complex relationships between brain structure 

and function from the integration perspective. 

 

5.1 Introduction 

Up until now, benefitting from the development of noninvasive neuroimaging 

techniques and graph theory methods, fMRI studies in brain network have reported 

fruitful results to promote our understanding and re-cognition for functional integration 

[116, 123, 125, 242]. By calculating the topological properties from spatially distant 

neural regions, brain patterns in a functional network can be measured at various analysis 

levels, such node, group and network [243]. At node-level analysis, considering to distinct 

topological roles for different nodes in the network, the degree and strength of individual 
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nodes are measured to quantify the importance of a node. For example, the highly 

connected nodes are often called centrality [244] and hubs [54, 82] that strongly affect 

the brain communication and neural integration. At group-level analysis, the modular 

community structure is explored to select a subset of highly inter-connected nodes which 

are relatively sparsely connected to nodes in other modules [80]. At network-level 

analysis, the brain network is seen as a whole, which is observed by components, density, 

shortest paths and so forth. 

On the basis of the above, numerous functional brain networks with highly test-retest 

reliability are found and defined [124, 245]. The default mode network is a large-scale 

brain network primarily composed of the medial prefrontal cortex, posterior cingulate 

cortex/precuneus and angular gyrus, which more active at rest than during tasks [246, 

247]. The control network is further divided into two distinct “fronto-parietal” (to initiate 

and adjust control) and “cingulo-opercular” (provides stable ‘set-maintenance’ over entire 

task epochs) components with different functions [248]. The salience network that is 

primarily composed of the anterior insula and dorsal anterior cingulate cortex is involved 

in detecting and filtering salient stimuli, which is theorized to mediate switching between 

the default mode network and central executive network [249, 250]. The attention 

network is also divided into two separate sub-systems (the dorsal and ventral attentional 

system) for the voluntary deployment of attention and the reorientation to unexpected 

events, respectively [251]. The whole brain network is also parcellated to somatosensory 

[252, 253] and visual [254] subgraphs. 
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5.2 Problem Statement 

Many functional network properties of the human brain have been identified during 

rest and task states, yet it remains unclear how the brain processes complex functions by 

inter-regional coordination and collaboration [255, 256]. By definition, the rest-state 

fMRI measures the endogenous or spontaneous brain activity as low-frequency 

fluctuations (< 0.1 Hz) in blood oxygen level-dependent (BOLD) signals [29, 257, 258]. 

The rest-state functional connectivity is usually used to investigate the “intrinsic” network 

architecture that is present across multiple brain states, much like structural connectivity 

[245]. However, just as the world is colorful, it is difficult to specify a unified brain 

connectivity pattern to represent all conditions. In most cases, the “intrinsic” functional 

connectivity pattern is interpreted as an architecture that can be related to as many states 

as possible. Changes in network connectivity modulated by task are another important 

direction to understand brain integration [119]. The task-state functional network is used 

to explore specific connections modulated by specific task, measuring task-related 

coactivation patterns. Prior graph theory work suggests that the functional architecture of 

the human brain is modulated by age, sex, intelligence, genetic predisposition, working 

memory, visual stimulation, motor learning, auditory stimulation, emotion processing and 

brain disorders [259]. These evidences indicate the value, practicality, and broad 

applicability of this method in neuroimaging research, including potential future 

applications in translational studies. As such, the increasing demands of task-state 

functional connectivity push us to rise to the challenge. 

Furthermore, the complexity of linking function and structure is also concerned to 

characterize brain functions for a subnetwork within a specific brain region. This 

approach parceled brain areas on the basis that each subregion has a unique pattern of 



5.2 Problem Statement 138 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

connectivity – a “functional fingerprint” [260]. For example, Lucina et al. reviewed six 

ubiquitous anatomical-named large-scale functional brain networks, including the 

occipital network (commonly for visual), pericentral network (commonly for 

somatomotor), dorsal frontoparietal network (commonly for attention), lateral 

frontoparietal network (commonly for control), midcingulo-insular network (commonly 

for salience) and medial frontoparietal network (commonly for default) [261]. Yana and 

colleagues hypothesized that functional connectivity of the DLPFC with other brain 

regions contributes to different executive functional components, including inhibition, 

switching, working memory, performance monitoring, selectivity, a verbal component 

and perseverations with impulsivity, and tested it by using both a neuropsychological 

assessment and fMRI [262]. Zhang et al. examined the patterns of resting state 

connectivity in the precuneus, in which the entire precuneus is parceled into three 

functional subdivisions (the dorsal part with dorsal-anterior and dorsal-posterior 

subregions, and the ventral part) with connectivity differences [263]. 
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5.3 Brain Connectivity Study Based on the GIM with HITL 

Currently, the neuroimaging-based functional integration analysis and mining methods 

have become an important research direction in the field of cognitive neuroscience. From 

this, the GIM can be quickly converted and personalized in different computing strategies 

according to requirements and customizations of experts and users. In this case, we focus 

on the application of the GIM in the field of brain network, especially for the extensible 

mining and analysis of the hidden correlation between complex cognitive functions and 

brain network systems. At this time, brain, cognition, network patterns and indicators 

become several important concepts involved in the current model. One of its main aims 

is to explore network topology with unique cognitive and functional characteristics from 

the perspective of large-scale brain networks. Another aim is to measure brain network 

characteristics and information-processing mechanisms by computing various 

performance indicators. Therefore, a realistic use case combining multiple fMRI datasets 

and network analysis methods is performed to evaluate the effectiveness of this model. In 

order to realize the GIM-based brain network understanding and analysis, the acquisition 

processing and organization strategies of the resources are firstly defined in the 

experimental stage surrounding the KnowL, InfoL and DataL. 

5.3.1 Experiments 

a. Conceptual Definition in the 𝐾𝑛𝑜𝑤𝐿 

Human cognition is summarized as some complex mental activities such as human 

reasoning [264], problem-solving [265] and decision-making [266] that typically rely on 

the combination and interaction of elementary processes such as perception, learning, 

memory, emotion [267, 268], and so forth. In this study, these cognitive functions or 
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mental processes are represented as concepts, which are organized into hierarchical 

ontology structures. And the hierarchical relations of cognitive elements in the conceptual 

Data-Brain are constructed by reference to the existed cognitive model such as Cognitive 

Atlas [95]. The cognitive function-related graph in the 𝐾𝑛𝑜𝑤𝐿 is shown in Figure 5.1A. 

b. Information Organization in the InfoL 

The 𝐼𝑛𝑓𝑜𝐿 consists of two parts: the definition of patterns (𝑃𝐼𝐷) and the computing 

methods of indicators (𝑃𝐼𝑀). In current work, multiple representative brain networks are 

discussed, such as the Default (Mode) Network (DN), the Attention Network (AN), the 

Salience Network (SN) and the Control Network (CN) [124]. In addition, we also define 

an emotionally related network, the core affect architecture (CAA) [269]. Here, various 

brain network structure information is represented, and these networks corresponding to 

functional meanings or cognitive processes were stored in the PID of the InfoL. For 

example, existing research showed that the DN (including the core DN subsystem 

𝐷𝑁𝐶𝑂𝑅𝐸 , the medial temporal lobe-centred DN subsystem 𝐷𝑁𝑀𝑇𝐿  and the third DN 

subsystem 𝐷𝑁𝑆𝑈𝐵3 ) has a greater correlation with spontaneous cognition, mental and 

emotional processes; the AN (including the dorsal attention network DAN and the ventral 

attention network VAN) is the network for redirecting attention from one entity to another; 

and the CN exhibits different information-processing mechanisms during short-term and 

long-term task execution. Obviously, these brain functional networks, on the one hand, 

can be used as the reference to test the rationality of hypotheses, and on the other hand, 

encourage us to discover new information and knowledge on the basis of these existing 

patterns. Furthermore, some methods such as statistics, machine learning, and network 

topology analysis are defined in the 𝑃𝐼𝑀 of the InfoL. In this case, three commonly used 

index calculation methods are focused, including the Clustering Coefficients Index (CCI), 
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the Local Efficiency Coefficients (LEC) and the Global Efficiency Coefficients (GEC). 

These indicators will be computed in the DataL of the GIM. 

c. Data Processing in the 𝐷𝑎𝑡𝑎𝐿 

From the description in Section 3.4.5, at least two Thinking-Entities are required to 

achieve comparison, interaction and inference in the GIM within human-in-the-loop. In 

current work, three task-state fMRI datasets were acquired by implementing various 

cognitive experimental tasks, including the emotional face recognition (EFR) task, the 

number series completion (NSC) task and the number placement puzzles (NPP) task, 

which are primarily related to emotion, reasoning and problem-solving processes, 

respectively. These three datasets are mapped to three Thinking-Entities in the GIM, as 

the minimum computing unit to verify its effectiveness. The usage data from 58 in total 

(female/male: 19/39; ages 20-79 yr) Chinese healthy participants with a college (or higher) 

education were finally adopted for group-level analyses in the present study. Specifically, 

the number of participants recruited for the EFR, NSC, and NPP was 30, 13, and 15, 

respectively. All of the participants were right-handed, had normal or corrected-to-normal 

vision, and reported no history of neurological or psychiatric disorders. Prior to their 

participation in the study, written informed consent was obtained from each participant 

after the nature and possible consequences of these studies were explained. These 

experiments were approved by the Ethics Committee of Xuanwu Hospital, Capital 

Medical University, Beijing. The detailed context of the original data and the method of 

obtaining its procedural data are described below. 
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5.3.2 Results 

The goal of learning is to measure the level of difference between Thinking-Entities. 

Through the interactive learning processes defined in Section 3.4.5, we can get the results 

of the 𝑆𝑑𝑖𝑓 and 𝐾𝑑𝑖𝑓. First, we constructed 𝐷𝑇𝐸𝐾𝑠 of ERF, NSC, and NPP entities 

from the definition of the 𝐾𝑛𝑜𝑤𝐿, as shown in Figure 5.1B. Then, the semantic distance 

between Thinking-Entities, 𝑆𝑑𝑖𝑓 , was calculated by the hamming distance evaluation 

method, as shown in Figure 5.1C. In order to calculate 𝐾𝑑𝑖𝑓, two parameters need to be 

preset, that is the P−Value and 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 . Here, the P−Value was set to 0.01 in the 

convergence condition, and the maximum number of interactions 𝑚𝑎𝑥𝑖𝑡𝑒𝑟 was set to 30 

times. After multiple interactions, the cognitive weights and their differences between 

Thinking-Entities were measured, as shown in Figure 5.1D.  
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Figure 5.1: The functional connectivity-oriented analysis results of the HITL interactive learning 

and inference in the GIM. A. The definition of cognitive concepts in the KnowL of the conceptual 

Data-Brain. B. The weight distribution of data-to-cognitive concept mapping for EFR, NSC and 

NPP entities, respectively. C. The semantic differences are given by measuring among various 

Thinking-Entities. D. The results of interactive learning during the DIK loop. 
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The 𝐷𝑑𝑖𝑓 is measured by combining with the graph and statistics related theory. First, 

the BOLD signal time series of the task states from the scans for each participant was 

extracted. Then, the Pearson correlation coefficient matrix was calculated by the 170 × 

170 extended brain atlas. These matrices used the Fisher transformation to calculate the 

Z-score of each cell in the matrix. In addition, the adjacent matrices of different subnets 

were constructed on the basis of the related ROIs defined in the 𝐼𝑛𝑓𝑜𝐿 . Further, the 

indicators (including, CCI, LEC and GEC) of the subnet at 1-100 sparsity were calculated 

separately. Finally, we used the analysis of variance (ANOVA) statistical method to 

determine whether there is a significant difference between Thinking-Entities with the 

same indicator for the subnet at all sparsity levels. Here, the P−Value was set to 0.05, and 

a variance homogeneity test was performed. In this case, the number of sparsity that 

shows a significant difference is counted for each subnet and is used as a criterion for 

determining 𝐷𝑑𝑖𝑓 . Therefore, the magnitude of the difference in the 𝐷𝑎𝑡𝑎𝐿  is 

proportional to the number of sparsity obtained by the above counting method. In practice, 

we randomly selected 13−14 participants from each dataset for maintaining an 

approximately consistent data size. The assessment results of the difference between the 

Thinking-Entities are finally obtained from the 𝐷𝑎𝑡𝑎𝐿, as shown in Table 5.1. 
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Table 5.1: The comparison of differences between Thinking-Entities in the 𝐷𝑎𝑡𝑎𝐿. 

         Network       

          Metrics 

     

Brain    

Functional 

Networks 

The Clustering 

Coefficients Index (CCI) 

The Local Efficiency 

Coefficients (LEC) 

The Global Efficiency 

Coefficients (GEC) 

EFR 

| 

NSC 

EFR 

| 

NPP 

NSC 

| 

NPP 

EFR 

| 

NSC 

EFR 

| 

NPP 

NSC 

| 

NPP 

EFR 

| 

NSC 

EFR 

| 

NPP 

NSC 

| 

NPP 

𝐷𝑁𝐶𝑂𝑅𝐸  3.00 1.00 0.00 0.00 1.00 1.00 8.00 11.00 1.00 

𝐷𝑁𝑆𝑈𝐵3 7.00 0.00 1.00 8.00 1.00 1.00 10.00 2.00 2.00 

𝐷𝑁𝑀𝑇𝐿  1.00 4.00 5.00 2.00 4.00 5.00 4.00 8.00 4.00 

DAN 15.00 29.00 3.00 8.00 22.00 1.00 7.00 7.00 8.00 

VAN 8.00 0.00 0.00 11.00 1.00 0.00 11.00 14.00 4.00 

SN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.00 10.00 

FPCN 1.00 10.00 0.00 1.00 11.00 3.00 0.00 5.00 6.00 

COCN 0.00 0.00 2.00 0.00 0.00 2.00 2.00 2.00 6.00 

CAA 61.00 23.00 12.00 39.00 14.00 9.00 11.00 1.00 6.00 

 

According to the two types of knowledge inference rules defined in Section 3, we have 

obtained some interesting results. From the KID inference scheme, we can select some 

〈𝑃𝐼𝐷, 𝑃𝐼𝑀 〉  pairs that reflect better consistency from knowledge to data. Here, some 

combinations of 𝐷𝑁𝐶𝑂𝑅𝐸 with CCI, VAN with LEC, CAA with CCI, and CAA with LEC 

were selected. From the perspective of the DIK inference scheme, we hope to verify the 

reliability of existing information and obtain some new knowledge through the 

constraints of the data layer. Here, the tacit knowledge of some network patterns was 

explored in this process, such as 〈〈CAA, CCI〉, Emotion 〉  and so on. The complete 

inference results from a one-time run of one expert are shown in Table 5.2. 
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Table 5.2: The results obtained by the GIM with HITL from the brain connectivity perspective. 

         Network       

          Metrics 

     

Brain    

Functional  

Networks 

The Clustering 

Coefficients Index (CCI) 

The Local Efficiency 

Coefficients (LEC) 

The Global Efficiency 

Coefficients (GEC) 

𝐷𝑁𝐶𝑂𝑅𝐸  

Heuristic problem 

solving; 

Emotion 

Analysis and synthesis 

problem solving; 

Motivation 

Deductive reasoning; 

Inductive reasoning; 

Analogical reasoning; 

Intuitive decision-making; 

Empirical decision-making; 

Heuristic decision-making; 

Rational decision-making; 

Hill climbing problem 

solving; Algorithmic 

deduction problem solving; 

Divide and conquer problem 

solving; Learning; 

Language; Memory 

𝐷𝑁𝑆𝑈𝐵3 

Heuristic problem 

solving; 

Emotion 

Heuristic problem 

solving; 

Emotion 

Heuristic problem solving; 

Emotion 

𝐷𝑁𝑀𝑇𝐿  

Analysis and synthesis 

problem solving; 

Motivation 

Analysis and synthesis 

problem solving; 

Motivation 

Direct facts problem 

solving; Perception; 

Attention 

DAN 

Direct facts problem 

solving; Perception; 

Attention 

Direct facts problem 

solving; Perception; 

Attention 

—— 

VAN 

Heuristic problem 

solving; 

Emotion 

Heuristic problem 

solving; 

Emotion 

Deductive reasoning; 

Inductive reasoning; 

Analogical reasoning; 

Intuitive decision-making; 

Empirical decision-making; 

Heuristic decision-making; 

Rational decision-making; 

Hill climbing problem 

solving; Algorithmic 

deduction problem solving; 

Divide and conquer problem 

solving; Learning; 

Language; Memory 

SN 

Abductive reasoning; 

Exhaustive search 

problem solving 

Abductive reasoning; 

Exhaustive search 

problem solving 

Analogy problem solving 

FPCN 

Direct facts problem 

solving; Perception; 

Attention 

Direct facts problem 

solving; Perception; 

Attention 

Analogy problem solving 

COCN —— —— —— 

CAA 

Heuristic problem 

solving; 

Emotion 

Heuristic problem 

solving; 

Emotion 

Fallacious reasoning; 

Thought 
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5.3.3 Discussions 

In this case, the GIM is presented to implement the KID and DIK schemes for different 

goals: the former focuses on the advanced feature analysis of brain patterns, while the 

latter focuses on the cognitive understanding of brain patterns. Therefore, we discuss 

current learning and reasoning results from the above two perspectives.  

For the KID loop, an experimental task is often designed to observe specific cognitive 

processes. For example, the EFR task is mainly to observe the process of emotional 

cognition, the NSC task is mainly to observe the cognitive process of reasoning, and the 

problem-solving process is uncovered by the NPP task. Considering the differences in 

experimental tasks and cognitive functions, we can be obtained the semantic distance 

between different Thinking-Entities. From Figure 5.1C, we can see that there is a large 

semantic distance between EFR and NSC/NPP, but the semantic distance between NSC 

and NPP is relatively short. These results are consistent with current cognitive theory and 

previous fMRI studies, on the one hand, which emphasizes the correlation between 

reasoning and problem solving [270]. On the other hand, emotion is seen as an 

independent factor that is perceived and studied for its impact on advanced cognition 

[271]. In addition, the quantitative semantic distance allows us to visually and objectively 

compare differences between Thinking-Entities in detail. For example, we can further see 

that the difference between EFR and NSC seems to be greater than that between EFR and 

NPP based on numerical comparisons in 𝑆𝑑𝑖𝑓. These quantified results in the 𝐾𝑛𝑜𝑤𝐿 

are used to constrain the observation results of the 𝐷𝑎𝑡𝑎𝐿 from Figure 5.1E, which in 

turn verify the rationality of the hypothesis. For example, we find that the CAA network 

corresponding to the features more conforms to the cognitive rules of the 𝐾𝑛𝑜𝑤𝐿, that 

is, the emotions show greater specificity and correlation for the CAA network. These 
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findings are in line with analysis results of emotion [269]. Moreover, we also find that the 

emotional process has a correlation with 𝐷𝑁𝐶𝑂𝑅𝐸 and VAN from the inference results, 

which is similar to the previous study [272, 273]. Furthermore, the calculation methods 

for different types of indicators also serve as an important factor affecting the results of 

learning and inference. For example, the CCI and LEC that measure the local transmission 

capacity of the network are more conducive to express the network characteristics than 

the GEC that measures the global transmission capacity of the network from the 

distribution of inference results in Figure 5.1E, which complements the Pan’s results in 

[274]. For the DIK loop, Figure 5.1F shows the subnet-related cognitive processes, which 

are the inference results based on Figure 5.1D and Figure 5.1E. From these results, we 

find that 𝐷𝑁𝐶𝑂𝑅𝐸, VAN, and CAA are all related to the emotional process obviously, and 

these results are also consistent with that in the top-down scheme. The SN has a large 

correlation with reasoning, which is similar to previous research studies [275]. The fMRI 

studies have previously implicated both the FPCN and COCN, which play dissociable 

roles in control, but their respective contributions are unclear [248, 276]. From the results 

in Figure 5.1F, we find that the reasoning results between FPCN and COCN are 

significantly different, which potentially supports the above conclusions. Further, the 

FPCN exhibits a richer functional meaning than the COCN, which may be closely related 

to the attributes of the network. For example, the FPCN not only reflect engagement of 

specific tasks, but also serve as a code that can be transferred to facilitate learning novel 

tasks. Especially, the FPCN is related to attention and perception [277, 278]. However, 

the COCN is more related to word and language tasks [279]. We also observed that the 

heuristic problem solving and emotion processes have a higher co-occurrence than others. 

Does this mean that they have a similar cognitive mechanism, which deserves further 
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exploration by designing new experiment? The current results are drawn from an expert. 

Obviously, with the changes of people, the output of the model may be slightly different, 

which reflects the individualized interaction and inference ability of this dynamic model. 

Based on the above discussion, we can find that the KID and DIK schemes in the GIM 

constitute a supervisory loop, which can achieve mutual verification of decision 

rationality. Towards never-ending learning workflow interacting within the GIM, more 

novel results will be discovered. 
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5.4 Brain Connectivity Study Based on the GIM with HITL-

Aided NEL 

To obtain an answer A for a specific question Q (such as “which brain nodes in a 

network are involved in the inductive reasoning process?” and “which information related 

to cognitive functions can be more processed by a specific brain network”), the general 

intelligence model performs never-ending learning within iterative loops. More 

specifically, the model interacts with sample library for extracting evidence by inference 

engine. The single evidence can be computed by univariate and multivariate analyses, 

followed by preprocessing for fMRI. Increasing with the new evidence, the results will 

be updated continuously by evidence combination and fusion computing within the model. 

All of them are presented in Figure 5.2. 

  

 

Figure 5.2: The general intelligence model used for the functional connectivity-oriented never-

ending learning. 
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5.4.1 Experiments 

In this case, the general intelligence model was evaluated from the human brain 

connectome perspective. The functional connectivity analysis was performed to interpret 

the casual relationships between inductive reasoning and a specific brain region by 

processing task-state fMRI data. The investigators first set up parameters related to the 

four dimensions of conceptual Data-Brain, such as functional domain “inductive 

reasoning”, experimental paradigm “categorical design”, experimental protocol “block 

design”, explicit stimuli “digits, letters”, data object “fMRI”, analytical method “degree 

centrality, machine learning and ANOVA”, as shown in Figure 5.3. The details of network 

construction and connectivity measure are illustrated as follows, followed by 

preprocessed operations. 

 

 

Figure 5.3: Reconstruction of conceptual Data-Brain for the human reasoning-oriented brain 

connectivity study. During the human-in-the-loop (HITL) procedure, the conceptual Data-Brain 

is specified by users with the parameters of interest. Hence, the evidence is sampled and integrated 

to realize systematic brain computing with never-ending learning. 
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Network construction. The CC400 atlas was used to parcellate the gray matter into 392 

cortical and subcortical brain regions [280]. The time series from the processed data for 

each node were extracted to build a 392×392 pairwise correlation matrix for each scan 

during each experiment using partial correlations. The derived correlation coefficients 

were normalized to Fisher’s z score and the positive values were considered. Afterwards, 

these matrices were transformed to binary networks based on the various densities, where 

edges with value “1” were defined to the connections with coefficients higher than the 

given threshold. 

Connectivity measure. We quantified nodal contribution within the whole-brain 

functional network by two centrality measures, including: degree centrality. For more 

details, these graph theoretical measures were described in [Network Centrality in the 

Human Functional Connectome]. All measures were calculated by using the NetworkX 

package (https://networkx.org). 

5.4.2 Results 

While the parameters were set up within the human-in-the-loop, the sample 𝐷71 in 

LOOP-1 (a sample for inductive reasoning study using the numerical serial complement 

task with categorical and block design) with the greatest expectation of experimental 

characteristic was extracted from the sample library (the details of sample library are 

listed in Table 1 of Appendix A.). Next, as shown in Figure 5.4, the supplementary 

experiments from LOOP-2 to LOOP-9 were extracted continuously during the never-

ending learning process, following the order listed by 𝐷81, 𝐷52, 𝐷51, 𝐷82, 𝐷1, 𝐷4, 𝐷2, 

D6 and D72. Considering the intra- and inter- analyses, the six samples (including 𝐷1, 

𝐷4, 𝐷51, 𝐷52, 𝐷81 and 𝐷82) were designed as the Type-I, conversely, the other three 

samples (including 𝐷6 and 𝐷72) were designed as the Type-II. 
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Figure 5.4: The sampled brain data under the never-ending learning process of the brain 

connectivity for reasoning. 

 

In the same way as a functional segregation study, these extracted samples were further 

processed by a KID and DIK schemes. On the one hand, the KID schemes were performed 

by evidence combination and fusion computing. The significance to each node in brain 

atlas was determined by the ANOVA approach-based statistical comparisons of different 

conditions in each sample for derived networks at 50 densities ranging from 0.01 to 0.5 

with an increment interval of 0.01. After determination, the summation of the significant 

nodes was counted across all densities for each experiment and normalized to gain the 

uncertainty weights of a single evidence. As shown in Figure 5.5, the significant nodes 

were acquired by analyzing the 𝐷71 sample in LOOP-1, reveling by the contrasts of 

‘numerical inductive reasoning > perceptual judgment’ within the numerical serial 

complement task. Nodes that showed the positive effects during the inductive reasoning 

process were found in amygdala, the percental gyrus, the inferior frontal gyrus (orbital 

part), the postcentral gyrus, the supplementary motor area, the middle frontal gyrus, 

cerebellum, thalamus, cuneus, insula and the middle temporal gyrus. 

As shown in Figure 5.6, the significant nodes were acquired by analyzing the 𝐷81 

sample in LOOP-2, reveling by the contrasts of ‘numerical inductive reasoning > 
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perceptual judgment’ within the numerical serial complement task. Nodes that showed 

the positive effects during the inductive reasoning process were found in insula, the 

anterior cingulate and paracingulate gyri, the caudate nucleus, the supplementary motor 

area and hippocampus. 

As shown in Figure 5.7, the significant nodes were acquired by analyzing the 𝐷72 

sample in LOOP-9, reveling by the contrasts of ‘numerical calculation > perceptual 

judgment’ within the mental arithmetic task. Nodes that showed the positive effects 

during the calculation process were found in the middle occipital gyrus, the postcentral 

gyrus, the supplementary motor area, the middle frontal gyrus, the inferior temporal gyrus, 

the superior frontal gyrus, the middle temporal gyrus and thalamus. 

By fusing these nodes that are sensitive to various experiments, the uncertainty was 

computed to gain a renewed understanding of the inductive reasoning during the KID 

loop. As shown in Figure 5.8, the weights of nodes at uncertainty changed in the 

intermediate learning process. From LOOP-1 to LOOP-9, the uncertainty weights of node 

change from small to big, which indicates more than one evidence can support the 

importance of nodes of what have greater relevance for the inductive reasoning. 

Along with the KID scheme, the DIK scheme were performed during the process of 

never-ending learning in general intelligence model. For each newly acceding evidence, 

the cognitive contents of nodes in the frontal lobe were decoded by the multivariate 

pattern analysis methods from brain activity. Through fusion computing, the support 

degree was acquired in inductive reasoning with 0.563 and calculation with 0.533, as 

shown in Figure 5.9. 
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Figure 5.5: The computing results of brain functional connectivity patterns for inductive 

reasoning in LOOP-1. 
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Figure 5.6: The computing results of brain functional connectivity patterns for inductive 

reasoning in LOOP-2. 
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Figure 5.7: The computing results of brain functional connectivity patterns for calculation in 

LOOP-9. 
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Figure 5.8: Uncertainty results for each loop within the never-ending learning of brain functional 

connectivity patterns.  
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Figure 5.9: The casual inference for interpretations of the goal hypothesis with cognitive 

functions and crucial nodes within brain atlas. The brain functional connectivity-centric forward 

results show the prefrontal cortex and striatum are required to participant in the human reasoning 

process. Meanwhile, the reverse inference results show the prefrontal cortex exhibits the specific 

support for reasoning, comparing with calculation. 

 

5.4.3 Discussions 

From functional integration theory, the separated brain regions interact with each other 

to maintain the basic activities in body, and serve as the high-level cognitive functions as 

a whole. The study in human brain connectome is another important view to provide 

insight into how the brain mechanisms of functional connectivity are interpreted at 

various cognitive functions. In this case, the functional connectivity mechanisms of 

human reasoning are investigated. For deductive reasoning, Goel et al. observed a large 

brain network covered by bilateral occipital, parietal, temporal, and frontal lobes; basal 

ganglia; and cerebellar regions [281]. During deductive problems, activation was located 

in the bilateral frontoparietal network, whereas for inductive problems, we found 
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activation in the further left-sided PFC, the parieto-occipital junction, and the BG, 

suggesting additional cognitive demand [281]. Prado et al. reported activations in specific 

regions of a left fronto-prietal network, as well as in the left BG for deductive reasoning, 

by using a quantitative meta-analysis of 28 neuroimaging studies [224]. Monti et al. 

isolated the neural correlates of deductive reasoning and addressed the role of language 

in deduction [282]. They revealed a network of activations disjoint from the “core” 

regions (including the left rostral and bilateral medial prefrontal cortex) which perform 

deductive operations and the “support” regions (including the left frontal and parietal 

cortices) which maintain the formal structure of arguments. Furthermore, Hampshire et 

al. found the right lateralized network (including the dorsolateral prefrontal cortex and 

superior parietal cortex) seems to take part in the process of induction, specifically when 

the cognitive loads increase with respect to reasoning [283]. For both deductive and 

inductive reasoning, the frontoparietal network is the most consistently activated brain 

network (the bilateral DLPFC (BA 9) and the SMA (BA 6), as well as in the left PPC (BA 

7, BA 40)) [284, 285]. For example, Jia et al. (2011) showed that the particular 

involvement of the frontoparietal network in relation inference processes [228]. Moreover, 

Liang et al. found the striatal–thalamic network plays an important role in figural 

inductive reasoning [286]. In a lesion study, Schmidt et al. (2012) differentiated between 

associative and categorical analogies and showed that the former relies on a left-lateral 

language network whereas the latter one recruit’s areas from both hemispheres [287]. 

During general reasoning, that is, syllogistic, as well as conditional reasoning, Wertheim 

et al. found a wide-spread activation network encompassing the frontal, parietal, sublobar, 

limbic, posterior lobes [288]. Blackwood and Rao et al. found the coactivation of the 

cerebellum with the SMA, IPL and occipital cortex to mediate decision-making under 
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uncertainty [289] and the active during conceptual reasoning [290]. It was suggested that 

the cerebellum plays a key role in the construction of a mental working model of the 

world under uncertainty [289, 291, 292]. Furthermore, it is assumed that the cerebellar–

thalamic–DLPFC network serves as a mechanism for integrating and gating of structured 

thought [293, 294]. This is especially the case, Wertheim et al. found activation in the 

parietal and frontotemporal networks in content and abstract tasks, respectively [288]. 

Porcaro et al. found a contradictory reasoning network (corresponding to the right middle 

frontal gyrus, the right inferior frontal gyrus, the right medial frontal gyrus and the 

anterior cingulate cortex) by an EEG and fMRI study [295]. Shokri-Kojori et al. revealed 

the brain-wide connectivity between primary visual and parietal regions, and their 

influenced activity in frontal lobes [296]. They found a caudal-rostral flow of process 

within prefrontal cortex (PFC) in reasoning tasks with minimal top-down deductive 

requirements. 

5.5 Conclusion 

In this chapter, we empirically study the important problem of learning brain patterns 

from the functional integration perspective. We perform the inductive reasoning-centric 

brain connectivity pattern analyses based on the general intelligence model. 
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Chapter 6 

                                                                                   

 

Translational Study Learned by GIM Analyses 

 

The previous two chapters carried out in the GIM, and generated uncertainty 

distribution to promote understanding the higher-level cognitive functions. Such basic 

cognitive neuroscience-oriented results are further considered to transfer from one site to 

multiple sites. This chapter applies the research results from the GIM analyses to the 

translational applications.  

 

6.1 Problem Statement 

Mental health is the foundation for the well-being and effective functioning of 

individuals. Good mental health enables individuals to think, to work, to learn, to engage 

with other people, and to participate in society. Conversely, mental disorders increase 

lifetime risk and cause significant suffering for individuals, their families and society as 

a whole. Currently, more than 970 million people are affected by mental health disorders 

in the world, which is slightly more than one in ten people globally. A high disease burden 

of mental disorders has been noted worldwide, including Japan. It is important to monitor 

mental disorder prevalence trends and the use of mental health services over time using 

epidemiological data, and to plan appropriate policies and measures that consider mental 
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health in each country [296]. There is a commonly accepted notion in mental disorders 

that are often defined as disorders of the brain, involving complex patterns of disturbances 

of cognition, affect and emotion, somatic functioning and behavior. Hence, decoding the 

relations between brain functions and mental disorders is a particularly important avenue 

for providing better mental health service and reducing the burden of mental disorders, 

laying the foundation for a shift in clinical practice [297]. 

On the one hand, the regional abnormalities in the brain may lead to various types of 

mental disorders. Phillips reviewed the existing findings about biomarker of bipolar 

disorder, regrading functional abnormalities in neural systems underlying emotion 

processing (amygdala centered), working memory and attention (dorsolateral prefrontal 

cortex centered) that are bipolar specific rather than common to unipolar depression [298]. 

Lim et al. given evidence about the neuroprogressive loss of gray matter volume in 

prefrontal and anterior cingulate cortex and the subgenual region, as well as the changed 

activation patterns involving fronto-limbic circuitry in bipolar disorder from reported 

studies of longitudinal brain structural/functional magnetic resonance imaging [299]. 

Meta-analysis of case-control differences in task-fMRI activation revealed the relatively 

overrepresented regions with meaningful diagnosis-specific effects across psychiatric 

disorders, such as the dorsal and ventral striatum, the amygdala and hippocampus and 

cortical regions within the frontal operculum/anterior insula, the posterior 

parahippocampal gyrus and the paracingulate gyrus [300]. Mental disorders also are the 

important reason for suicide, which can pose a nearly 80% increased risk of suicide 

compared with individuals without a mental disorder [301]. Neuroimaging studies mainly 

showed the involvement of the ventrolateral orbital, dorsomedial and dorsolateral 

prefrontal cortices, the anterior cingulate gyrus, and to a lesser extent, the amygdala [302]. 



6.1 Problem Statement 165 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

On the other hand, network organization fundamentally influences the brain diseases, 

and a connectomic approach grounded in network science is integral to understanding 

neuropathology [51, 303, 304]. Cui et al. found the abnormal global-brain functional 

connectivity in major depressive disorder, including the increased global-brain functional 

connectivity (specifically for the bilateral insula, the right inferior parietal lobule (IPL), and 

the right supramarginal gyrus/IPL) and the decreased global-brain functional connectivity 

(specifically for the bilateral posterior cingulate cortex/precuneus and the left calcarine 

cortex) compared with healthy controls [305]. Studies showed the strength of functional 

connectivity was significantly decreased in people with schizophrenia, whereas diversity 

of functional connections was increased [306, 307]. The abnormality in brain connectivity 

of social network (mainly including the anterior cingulate cortex, amygdala, the 

dorsomedial prefrontal cortex, the fusiform face area, insula, the inferior occipital gyrus, 

the intraparietal sulcus, the mirror neuron system, the posterior cingulate cortex, the 

premotor cortex, the posterior superior temporal sulcus, the temporoparietal junction and 

the ventromedial prefrontal cortex) has impact on autism spectrum disorders [308]. Wolf et 

al. found both the regional brain activation deficits and the functional connectivity changes 

(including the abnormal functional connectivity between the left ventrolateral prefrontal 

cortex and the cerebellum, and the abnormal functional connectivity between the anterior 

cingulate and the parietal cortex) in the attention deficit hyperactivity disorder (ADHD) 

adults during working memory processing [309]. Bani-Fatemi et al. reviewed 78 functional 

and structural neuroimaging studies to conclude that suicidal brain across psychiatric 

diagnoses seems to heavily involve dysfunction of the fronto-temporal network, primarily 

involving reductions of gray and white matter volumes in the prefrontal cortex (PFC), the 

anterior cingulate and the superior temporal gyrus [310]. 
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Cognitive dysfunction is a primary symptom in mental disorders, which primarily affects 

cognitive abilities including learning, memory, perception, and problem solving [311]. 

Systematic consideration of the relations between cognitive dysfunctions and mental 

disorders can contribute to precision medicine and personal therapy, as shown in Figure 6.1. 

Historically, the unidimensional idea is concerned, that is exploring the same risk factors 

and biomarkers shared across multiple disorders, and often responding to the same therapy 

[312]. Furthermore, similar to the understanding of the complex relations between brain 

structure and function, differently activated regions are often ascribed disorder-specific 

functions in an attempt to link disease expression and brain function [300].  

Neuroimaging has developed into central to the quest for a biological and/or functional 

psychiatric diagnosis [313, 314]. By meeting neuroimaging and computational science, 

artificial intelligence algorithms have been widely used to different purposes from the 

diagnosis, treatment, intra-operative and postoperative assessment of brain diseases and 

mental disorders [147, 315]. For example, the machine learning and pattern recognition 

methods are applied to diagnosis, classification and predication of obsessive-compulsive 

disorder [316], attention-deficit/hyperactivity disorder [317], addiction [318] and dementia 

[319]. A serious problem in psychiatric practice is the lack of the specific and objective 

biomarker-based assessments to guide diagnosis and treatment. The use of such biomarkers 

could assist clinicians in establishing differential diagnosis, which may improve the specific 

individualized treatment [320, 321]. In this context, the systems-level neuroscience such as 

fusion computing can help towards advancing the translational studies in neuropsychiatric 

disorders [322, 323]. 
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Figure 6.1: Systems neuroscience with translational research towards smart health. 

 

6.2 Datasets 

In this case, the translational research is focused around the recognizing scenario of 

major depressive disorder. To meet the requirement, the training and testing samples were 

extracted within 𝐷3 from the sample library (see Appendix A Table 1). Diagnostic 

assessments for all participants (including 19 MDD patients and 19 matched healthy control) 

were performed, using the Mini International Neuropsychiatric Interview 6.0 (MINI 6.0) 

based on the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders 

(DSM). Additionally, both resting-state and task-state fMRI data were acquired with a 3.0 

Tesla MRI scanner (Siemens Trio Tim, Siemens Medical System, Erlanger, Germany). 

Details of the experimental task are described as shown in Figure 6.2. 
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Figure 6.2: Details of experimental data in translational research. Subjects were shown pictures and 

then required to solve mental arithmetic problems presented as overlays on the pictures. Three types 

of pictures corresponding to each task condition were applied, with positive (e.g., joyful, exciting), 

neutral, and negative (e.g., aversive) valences, respectively. As distractors, 2-digit simple mental 

addition and subtraction problems without carrying and borrowing were employed. 

 

In this dataset, each trial consisted of an emotion induction phase and a distraction phase. 

During the induction phase (2000 ms), a picture with a specific valence was displayed. 

Subjects passively viewed the picture to elicit an initial emotional response. During the 

distraction phase (4000 ms), subjects needed to shift attention from the picture to an 

arithmetic problem, and then decide whether the displayed solution was correct or incorrect 

by pressing two response keys using the left and right thumbs. Twelve successive trials with 

same task condition constituted a task block. Blocks of three conditions were mixed and 

counterbalanced, and every two task blocks were separated by a rest block. Data were 

acquired in three functional runs with a total of 36 trials for each type of task. The task 

design modifies and combines previous paradigms of distraction task to study attention 

control of MDD patients [324, 325]. Three task conditions were included and presented in 
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a block-designed pattern. Affective pictures were selected from the International Affective 

Picture System (IAPS) which is based on normative ratings in valence and arousal [326]. 

6.3 The GIM in Brain and Mental Health 

Figure 6.3 shows the overview of the general intelligence model-aided diagnosis 

framework that consisted of pattern learning, feature extraction and predictive model. The 

uncertainty weights of initial patterns are learned to guide feature extraction, and then affect 

the training of predictive models. Details of the different components in the general 

intelligence model-aided diagnosis framework are described as follows: 

• Pattern Learning: The general intelligence model is performed to learn the brain 

patterns with the uncertainty weights from the perspectives of brain region, node and 

connectivity, including the hypothesis tests of regions of interest, the exploratory 

analysis of the whole-brain activation pattern, the full-scale network topology 

analysis of the nodal pattern, and the connectivity analysis of the functional 

subnetwork pattern. 

• Feature Extraction: Features at different levels of uncertainty weights are extracted 

from the whole-brain pattern to various smaller subsets with different characteristics. 

In this case, the features corresponding to the patterns with the higher uncertainty 

weights (𝜏 > 0) are identified as the high specificity, whereas the feature patterns with 

the lower uncertainty weights (𝜏 < 0) are identified as the high robustness.  

• Predictive Model: The uncertainty level-specific neuroimaging features are divided 

into the training and testing samples, which are input into the machine learning 

methods to realize the mental health recognition. In this case, the constructed model 

is used to discriminate the samples between the patients with major depressive 

disorder and the healthy controls. 
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Figure 6.3: Flowchart of the general intelligence model-based diagnostic classification. Brain 

imaging data are obtained from two or more diagnostic groups and relevant features extracted, as in 

standard univariate analysis. Because data reduction is crucial to the success of this procedure, the 

general intelligence model-aided feature selection can be performed, including brain regions, 

functional connectivity and subnetworks. The preselected data are then fed into a classifier 

algorithm, which finds the optimal boundary between the two groups (e.g., the data points from the 

“healthy controls” and “mental disorder” groups). The performance of the trained classifier then has 

to be tested in independent data. 

 

6.4 Experiments and Results 

The experiments combined the machine learning methods and the information-

processing mechanisms, testing the brain patterns selected by the general intelligence 

model from the two views of brain localization and connectivity: (a) investigating the 

brain patterns with the specificity and robustness at different levels of uncertainty, and (b) 

estimating the predictable capability of brain patterns to help differentiate between the 

group of healthy controls and the group with major depressive disorder.  
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From the first view, the regions of interest in 𝜏 > 0, DLPFC (including the superior 

frontal gyrus and the middle frontal gyrus) and 𝜏 < 0 were selected as three brain patterns. 

The brain activities with respect to these three types of brain patterns were extracted from 

the fMRI data, respectively, and then were input to the classifiers to distinguish between 

healthy controls and the group with major depressive disorder. More specifically, ten 

nodes were select to construct these three patterns, where the nodes in 𝜏 = 0 were random. 

From the second view, thirty nodes in 𝜏 > 0, 𝜏 = 0 and 𝜏 < 0 were selected by the general 

intelligence model respectively, which were further constructed as three types of brain 

networks by estimating the partial correlation coefficient. In order to facilitate comparison, 

ten brain functional networks were constructed on the basis of a widely adopted consensus, 

including the default mode network, the fronto-parietal network, the sensorimotor 

network and the cerebellum network from the Dosenbach-160 atlas [327], the visual 

network, the salience network, the subcortical network, the ventral attention and the 

dorsal attention networks from the Power-264 atlas [245], and the limbic-lode network 

from the brainnetome atlas [328]. Such computed partial correlation coefficients from 

different brain networks were taken as features, which could be learned by classifiers to 

distinguish between healthy controls and the group with major depressive disorder. The 

current disease recognition model is constructed on the basis of XGBoost, which is a 

scalable end-to-end tree boosting system [329]. The 10-fold cross validation was applied 

to all classification tasks, corresponding to different cognitive experiment scenarios. 

6.4.1 Translational Brain Localization 

In this case study, the functional segregation-oriented uncertainty distribution was 

learned by running the general intelligence model as stated in Chapter 4, particularly in 

relation to inductive reasoning. Then, the samples were extracted from the dataset D3 (see 
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Appendix A Table 1), including the MDD and healthy groups that experienced tasks under 

different states of the rest state, the emotional picture-induced state and the state induced 

by emotional picture with arithmetic task. Finally, the features extracted from the different 

groups were recognized by the XGBoost library. Figure 6.4 shows the classification 

results of two groups of MDD and healthy for brain region and node patterns, respectively. 

On the one hand, for regions of interest-based classification results in Figure 6.4 (a), (c) 

and (e), we can find that the accuracies do not appear to differ significantly, but the 

number of boosting iterations to these three conditions has differences. Considering to the 

number of boosting iterations patterns in Figure 6.4 (a) and (c), it was found that the 

classification model with the uncertainty-guided brain patterns carried out less iterations 

than that of DLPFC-based brain. However, from Figure 6.4 (e), it was found that the 

classification model with the brain patterns of the uncertainty distribution at 𝜏 > 0 carried 

out more iterations than those of other patterns. On the other hand, for nodes of interest-

based classification results in Figure 6.4 (b), (d) and (f), we can find that the accuracies 

appear to differ relatively, and the number of boosting iterations to these three conditions 

has differences significantly. Considering to the number of boosting iterations in Figure 

6.4 (b) and (d), the classification model with the random 10 nodes-based brain patterns 

carried out less iterations than that of the uncertainty distribution-guided brain patterns. 

However, the classification model with the brain patterns of the uncertainty distribution 

at 𝜏 > 0 carries out less iterations than those of other patterns in Figure 6.4 (f). In addition, 

whether from the regional perspective or from the nodal perspective, the classification 

model could achieve recognition results exceeding ninety-five percent.  
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Figure 6.4: The classification results of the MDD group and healthy controls under different task 

states, corresponding to three types of brain region and node patterns. (a), (c) and (e) are the 

classification results corresponding to the brain region patterns, while (b), (d) and (f) are involved 

to the nodal patterns from the brain connectivity measurements. niter: number of boosting 

iterations; BA: Brain Area; BN: Brain Network; DLPFC is the dorsolateral prefrontal cortex 

involving the superior and middle frontal gyri; MDD: Major Depressive Disorder; HC: Healthy 

Control; HBM: Human brain Mapping; HBC: Human brain connectome. Ten nodes at different 

𝜏-distribution levels were extracted as feature patterns for the HBC-based classification tasks. 
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6.4.2 Translational Brain Connectivity 

The inductive reasoning-oriented uncertainty distribution was first learned by running 

the general intelligence model from the functional integration perspective, on the basic of 

task-state fMRI data from the sample library (see details in Table 1 of Appendix A). The 

learned uncertainty distribution guided the connectivity-based feature extraction for the 

prediction of the MDD samples, on the basic of the rest-state fMRI data. Figure 6.5 (top) 

shows that the predictive accuracies based on the constructed brain network patterns 

could achieve approximate 70%, 75% and 77%, respectively, corresponding to the 𝜏 > 0, 

𝜏 = 0 and 𝜏 < 0 related nodes. In this case, all nodes are from the CC400 atlas. Furthermore, 

the same predictive task was performed to achieve the accuracies of 78.631%, 73.631%, 

74.354%, 77.446%, 67.732%, 63.077%, 66.477%, 56.538%, 68.846% and 66.523%, 

respectively, corresponding to the network patterns of default, fronto-parietal, 

sensorimotor, visual, salience, subcortical, limbic lobe, ventral attention, dorsal attention, 

and cerebellum, as shown in Figure 6.5 (bottom). It was found that the predictive results 

based on the patterns at these brain networks of salience, limbic lobe, ventral attention, 

dorsal attention, subcortical and cerebellum exhibited the similar level of recognition 

accuracy, aligned with the brain patterns at 𝜏 > 0. Meanwhile, the predictive results based 

on the patterns at these brain networks of default, fronto-parietal, sensorimotor and visual 

exhibit the similar level of recognition accuracy, aligned with the brain patterns at 𝜏 < 0.  
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Figure 6.5: The classification results of MDD group and healthy group under rest-state task, 

corresponding to different functional subnetwork patterns. Thirty nodes were constructed as a 

subnetwork for classification tasks, respectively corresponding to three levels of uncertainty 

distribution. ten brain functional networks were constructed on the basis of a widely adopted 

consensus, including the default mode network, the fronto-parietal network, the sensorimotor 

network and the cerebellum network from the Dosenbach-160 atlas [327], the visual network, the 

salience network, the subcortical network, the ventral attention and the dorsal attention networks 

from the Power-264 atlas [245], and the limbic-lode network from the brainnetome atlas [328]. 



6.5 Discussions 176 

 

 

Maebashi Institute of Technology, Doctor Dissertation of Engineering 

Hongzhi KUAI: Data-Brain Driven General Intelligence Model with Smart Health Applications 

6.5 Discussions 

While the combination of neuroimaging and machine learning has encountered great 

success, it is still difficult to select a satisfactory brain pattern that is easy to interpret 

towards translational research. In this case, the brain patterns from two views of 

functional segregation and integration were selected by the uncertainty distribution, 

where the brain patterns corresponding to the higher uncertainty distribution indicate the 

higher functional specificity, the brain patterns corresponding to the near-zero uncertainty 

distribution indicate the high functional randomness, and the brain patterns corresponding 

to the smaller uncertainty distribution indicate the higher functional robustness. Therefore, 

the features could be extracted by those learned brain patterns. Furthermore, the 

functional networks from various brain atlases that have been widely recognized in the 

world are investigated, as the comparison to predicate the MDD samples. From Figure 

6.4 (a), (c) and (e), it was found that the selected brain region patterns at 𝜏 > 0 and 𝜏 < 0 

can relatively accelerate the convergence of classifiers under all task conditions, in 

contrast to the control of the random patterns in DLPFC. However, it was found that only 

the selected brain node patterns at 𝜏 > 0 can significantly accelerate the convergence of 

classifiers under the dual-task state, as shown in Figure 6.4 (f). Figure 6.5 (top) shows 

that the network-based brain patterns constructed by the 𝜏 > 0 related nodes could achieve 

the significantly higher accuracy than that of brain patterns at the 𝜏 < 0 and the relatively 

higher accuracy than that of brain patterns at the 𝜏 = 0. It seems to suggest that the 

impairment of the reasoning function is not obvious in the current MDD group. 

Furthermore, it was found that the selected brain network patterns at the 𝜏 > 0 indicate 

the similar sensitivity aligned to functional networks of salience, subcortical, limbic lobe, 

ventral attention, dorsal attention and cerebellum, while the selected brain network 
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patterns at the 𝜏 < 0 indicate the similar sensitivity aligned to functional networks of 

default, fronto-parietal, sensorimotor and visual, as shown in Figure 6.5.  

6.6 Conclusion 

In this chapter, we empirically study the important problem of translational research 

coupled with the intelligence model. We evaluate the uncertainty distribution-guided 

brain patterns on performance of classifiers and their applications in the recognition of 

samples with mental disorders.  
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Chapter 7 

                                                                                   

 

 

Epilogue 

 

In this chapter, we conclude the thesis and envision some future directions to work on 

Data-Brain driven general intelligence model. 

 

7.1 Contributions and Discussion 

In this thesis, we concern intelligent nature, intelligent development and smart health 

by the systematic brain computing with big data science. The general intelligence model 

is studied to explore brain information processing mechanisms from functional 

segregation and integration to extensible applications towards translational goal. More 

specifically, four points are highlighted as follows: 

1. Brain big data integration. Multi-source brain big data from local and global sites are 

modeled in a hierarchical knowledge (K)-information (I)-Data (D) architecture, 

namely K-I-D architecture. For this, the conceptual Data-Brain in the knowledge 

layer is developed to systematically model the whole life-cycle process of brain 

investigation, directed by the Brain Informatics methodology. The sematic vector in 

the information layer is developed to read requests of investigators, and at the same 

time, coordinate resources from the knowledge layer to the data layer. The sample 
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library in data layer is developed to map diffused brain resources into a standard 

space, constructing a resource network in the connected world. 

2. Systematic brain computing. A Data-Brain driven General Intelligence Model (GIM) 

is proposed as a novel brain-inspired computing approach, thinking like a human 

with capabilities on reasoning, learning, computing and decision making. It performs 

systematic experimental design, evidence combination and fusion computing within 

a K-I-D loop, driving never-ending learning of brain intelligence and health. Human-

in-the-loop is given to this model to realize interactive learning between both human 

and machine.  

3. Human intelligence understanding. The GIM is applied to realize systematic brain 

computing from perspectives of human brain mapping and human brain connectome. 

We performed reasoning and calculation-centric systematic investigations of higher 

cognitive functions. One the one hand, the association mining among brain functions, 

experiments, feature patterns and computing methods was executed by systematic 

experimental design and human-in-the-loop learning. On the other hand, never-

ending learning is executed to verify the effect of incremental learning in the brain 

big data era. 

4. Brain wisdom services. Brain is the important window to understand mental health. 

The GIM is applied to realize systematic brain computing from basic cognitive 

neuroscience studies to translational study for smart health. In this study, a 

classification model was constructed to realize the recognition of samples with major 

depressive disorders from healthy control, coupled with the brain localization and 

connectivity results from the GIM. 
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A study on Data-Brain driven general intelligence model will attract more and more 

widespread attention because of its ability to leverage the advantages of both human-in-

the-loop and never-ending learning of data, information and knowledge, which is expect 

to acquire more novel and solid results. Faced with this emerging field, a conceptual 

model that takes into account the power of systematic fusion has been proposed, namely 

Data-Brain. It inspires us to perform systematic brain investigation in the process of 

knowledge discovery. Furthermore, the collective wisdom is expressed as two interactive 

learning processes: one is from the external evidence learning, such as the published 

results; another is personal wisdom through dynamic human-machine interaction, which 

provides a feasible solution for systematic brain research.  

A series of representative case studies were executed to verify and illustrate the 

proposed Data-Brain driven general intelligence model. The main results for human 

intelligence are about the understanding of casual relationship between the dorsolateral 

prefrontal cortex and inductive reasoning. We can find that the dorsolateral prefrontal 

cortex is highly related to and has a strongly support to inductive reasoning in the 

processes of both the task-driven KID inference and the data-driven DIK inference. It 

should be mentioned that the proposed model also makes it possible to generate new 

hypotheses. With respect to inductive reasoning, several regions such as left middle 

temporal gyrus, right inferior temporal gyrus, fusiform gyrus and bilateral angular gyrus, 

were identified in the whole-brain exploratory analysis as the relevant brain regions, 

which were not reported in previous studies. Additionally, several functional circuits such 

as the fronto-striatal circuits, in which the involved key brain regions (including the 

prefrontal cortex, caudate, putamen) were detected by functional connectivity analysis, 

were also not ever reported. These results may act as new potential hypothesis, and inspire 
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us to design and run new experiment to test them. The main results for smart health are 

about the validation of feature patterns and the performance of classification accuracy. 

On the one hand, the learned feature patterns can accelerate the convergence of 

classification model and show robust to fit various task states. In particular, the brain 

localization-based feature patterns improve classification performance. On the other hand, 

the learned feature patterns from the GIM show the cognitive specificity, with the similar 

characteristics to the functional brain systems, such as the default network and the fronto-

parietal network. Although various case studies have been proposed to demonstrate the 

current model in the field of brain cognitive science, its other directions are worthy of 

attention.  

7.2 Future Work 

By meeting brain informatics and web intelligence, the general intelligence model is 

asked for mastering more abilities to dock with rapid development of brain science in the 

connected social-cyber-physical world. Along with never-ending learning, the thinking-

supported general intelligence model decodes brain information processing mechanisms 

to promote understanding of brain intelligence and brain health. At the same time, the 

human thinking ability inspired by brain intelligence is developed and integrated to the 

general intelligence model that performs like human. The complementary effects will 

promote continuous growth of the model for further adaptation to a wider range of 

scenarios, which interacts closely with each other within brain network. 

7.2.1 Brain Intelligence 

The Wisdom Web of Things (W2T) developed recently provides a SCP space for all 

human communications and activities, in which big data are used as a bridge to connect 

relevant aspects of humans, computers and things [153, 167]. It is a trend to integrate 
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brain big data and human behavior big data with knowledge graphs in the SCP space for 

realizing the harmonious symbiosis of humans, computers and things. In the relation 

between the cognitive neuroscience and big data, there are several interactions: brain 

function/structure measurements generate big data in multimodal and multi-scale, which 

could be used as open sources and interconnected by information networks and 

knowledge graph; social-media and sensor networks generate human behavior data in 

multi-modal and multi-media, which is also big data. Both types of data offer the stimulus 

sets for brain and AI researches. For neuroscience and cognitive science, thus, utilization 

of the big data as the stimulus sets has now provided new ways to better understanding 

of brain intelligence mechanisms in multi-scale. In order to realize these goals that depend 

on holistic intelligence research, the following challenges need to be dealt with: 

 How to understand brain from neural microcircuits to macroscale intelligence 

systems, supported by connecting network and brain with big data;  

 How to realize human-level collective intelligence as a big data sharing mind on 

the W2T by developing brain inspired intelligent technologies to provide wisdom 

services. 

On the one hand, hundreds of millions of neurons connect and interact with each other 

to form an intricate and vast network that is running orderly and at high speed all the time. 

Hence, the brain’s high-efficiency and high-rate properties can be cloned to optimize 

mathematical models and intelligent agents by simulating the neuron’s morphological 

structure, tissue connection and information transmission mechanisms [177, 330]. The 

realization of this achievement will greatly promote the breakthrough in the field of 

computational science. On the other hand, as a creature with the ability to learn and think, 

every action of human beings is affected and regulated by brain intelligence [331, 332]. 
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For instance, it is interesting to note that even though there is a huge difference in physical 

functions between two people, they are still able to perform certain intellectual tasks at a 

highly consistent skill level. It shows that human beings can make full use of the 

advantages of individual intelligence to make up for the deficiency of physical functions, 

so as to maintain stable operation of this complex system. Such a personalized adjustment 

mechanism is worthy of an in-depth study [333-335]. In addition, the reward mechanism 

is another important mechanism related to the human brain, which drives our behavior 

towards pleasure and drives us away from painful ones [336-338]. The reinforcement 

learning algorithm that learns through rewards has been applied to various domains [339] 

and given us a chance to understand how our brain does.3 Especially, a new theory has 

been proposed from recent studies about the reward mechanisms within our brains by 

optimizing reinforcement learning, namely the dopamine-based reinforcement learning 

[175]. Hence, it is indispensable to develop advanced brain-inspired intelligent algorithms 

by analyzing and imitating brain intelligence for realizing human-level general 

intelligence.  

As a novel brain computing platform, Data-Brain driven general intelligence model 

provides the powerful means to investigate the human brain as an information-processing 

system with big data helping us understand its capacities and limitations. Brain big data 

collected in the SCP space and integrated with human behavior big data and worldwide 

knowledge bases could help us realize human-level collective intelligence. The proposed 

Data-Brain model builds bridges between biological brain and intelligence systems. 

7.2.2 Brain Health 

  As the most important information processing and control center in the human body, 

the brain is closely related to cognitive, emotional, psychological and behavioral 
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functions. The individual with good brain health can realize his/her own abilities and 

optimize his/her functions to cope with life situations, which reflects the enormous 

potential of brain intelligence. In such a case, the healthy brain big data can be 

systematically collected, managed, analyzed and simulated to power future progress for 

building human-level intelligence systems and applications. Conversely, abnormal brain 

may lead to the loss of certain feelings and cognitive functions that are associated with a 

wide range of specific brain function diseases. For instance, dementia, which is a group 

of disorders caused by abnormal brain changes, can trigger the declines in memory, 

language, problem-solving, decision-making and other cognitive abilities [129, 340]. 

Mental disorders can also cause significant distress or impairment of personal functioning 

[341]. Such diseases give us more challenges on the combined investigations in cognition, 

emotion, pathology and their interactions from brain function and structure perspectives. 

In order to realize these goals that depend on systematic investigations, the following 

challenges need to be considered: 

 How to understand brain intelligence in depth, supported by the investigations of 

healthy and abnormal brains; 

 How to explore neural mechanisms of cognition, emotion and pathology, as well as 

their biomarkers; 

 How to investigate the disease progression across the whole cycle with respect to 

the prevention, diagnosis, evaluation, treatment, prognosis and rehabilitation. 

Based on the systematic Brain Informatics methodology, Data-Brain driven general 

intelligence model supports the combined investigations on various constituent elements 

of cognition, emotion and pathology within both healthy and abnormal brains, as well as 

novel services for brain and mental health. 
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7.2.3 Brain Internet 

Developing brain internet can be regarded as a tangible goal to implement brain-

machine intelligence and provide new solutions for brain health services in the connected 

world. Although the social network can be regarded as the most common form of brain 

internet, it is only a superficial connection, that is, ideas and thoughts (results of 

reprocessing) from the brain are transmitted and shared through the Internet, and the 

essence is not the direct interaction between brain and brain. Currently, direct brain-to-

brain interfaces and communication modes have received widespread attention, which 

combine multiple non-invasive technologies to extract and deliver information between 

brains, allowing direct brain-to-brain communication [208, 342, 343]. Moreover, the deep 

brain stimulation (DBS) [344] and intracranial electrophysiology [345, 346] technologies 

have also been applied to the study of neuropsychological and neuropsychiatric issues, 

which represent a window of opportunity for shaping the brain internet on the daily modes. 

The development of brain-machine intelligence with various neuromodulation 

technologies is bringing closer the vision of future Internet, where the brain and machine 

functions seamlessly blend into the background and the personalized capabilities are 

made possible through access of specific information sources. In order to implement a 

smooth, flexible and highly robust brain internet, the following suggested issues need to 

be considered: 

 How do we achieve brain-to-brain interactions of thoughts, perceptions and feelings 

based on neuroelectric recording and computational tools; 

 How do we advance brain-machine interfaces, powered by understanding neural 

mechanisms of cognition, emotion and pathology in depth; 
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 How do we provide innovative services and collective solutions for brain health, 

supported by future brain internet. 

As a bi-directional decoder between the inner brain information and the outer brain 

information, Data-Brain driven general intelligence model provides opportunities and 

new solutions for improvement by helping us understand and apply neural mechanisms 

of cognition, emotion and pathology, as well as helping us develop brain internet based 

new services for brain health. 
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Appendix A 

 

Appendix A Table 1: A fragment of the sample library from multiple sources. 

ID HIP EPM EPL ESI Contrast Subjects (⋇) 

D71[347] Reasoning Categorical Block Digits 
Numerical Induction,  

Perceptual Judgment 

Healthy 

(15) 

D72 [347] Calculation Categorical Block Digits 
Numerical Calculation, 

Perceptual Judgment 

Healthy 

(15) 

D4 [87] Reasoning Factorial 
Event- 

related 
Digits 

Complex Rule, 

Simple Rule 

Healthy 

(15) 

D1 [348] Reasoning Factorial 
Event- 

related 

Digits, 

Symbols 

Numeric, 

Symbols 

Healthy 

(13) 

D51 [228] Reasoning Categorical 
Event- 

related 
Digits 

Rule Induction, 

Perceptual Judgment 

Healthy 

(20) 

D52 [228] Reasoning Categorical 
Event- 

related 
Digits 

Rule Application, 

Perceptual Judgment 

Healthy 

(20) 

D81 [233] Reasoning Factorial Block Digits 
Numerical Induction, 

Perceptual Judgment 

Healthy 

(23) 

D82[233] Reasoning Factorial Block Letters 
Letter Induction, 

Perceptual Judgment 

Healthy 

(23) 

D3 [349] 
Emotion, 

Calculation 
Categorical Block Pictures 

Emotional Calculation, 

Emotion 

 

Healthy 

(13),  

MDD (13) 

D6 [350] Calculation Categorical Block 
Digits, 

Symbols 

Addition, 

Subtraction 

Healthy 

(22) 

D2 [160] Emotion Factorial 
Event- 

related 

Faces, 

Shapes 

Fear Face, Happy 

Face 

Healthy 

(30) 

E1 [34] Reasoning Full Full Full Mate-analysis -- 

E2 [32] Memory Full Full Full Mate-analysis -- 

E3 [32] Language Full Full Full Mate-analysis -- 

    …   

Note: MDD, major depressive disorder; MCI, mild cognitive impairment; ⋇, The number of 

subjects; HIP, human intelligence problem; EPM, experimental paradigm; EPL, experimental 

protocol; ESI, explicit stimulus. 
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Appendix A Table 2: Reasoning related external evidence from PubMed and PLOS series. They 

were searched from the sample library based on topic matching. 

NO Title 
Publication 

Year 

Subject 

Number 
Source 

1 
Dissociation of mechanisms underlying 

syllogistic reasoning 
2000 11 NeuroImage 

2 
Functional neuroanatomy of three-term 

relational reasoning 
2001 14 Neuropsychologia 

3 
The neural substrate of analogical reasoning: 

an fMRI study 
2003 36 

Cognitive Brain 

Research 

4 
Reasoning and working memory: common and 

distinct neuronal processes 
2003 12 Neuropsychologia 

5 
Differential involvement of left prefrontal 

cortexin inductive and deductive reasoning 
2004 15 Cognition 

6 
The cerebellum and decision making under 

uncertainty. Brain research 
2004 8 

Cognitive Brain 

Research 

7 
The effect of social content on deductive 

reasoning: An fMRI study 
2005 55 

Human Brain 

Mapping 

8 
fMRI evidence for a three-stage model of 

deductive reasoning 
2006 12 

Cognitive 

Neuroscience 

9 

Neural correlates of superior intelligence: 

Stronger recruitment of posterior parietal 

cortex 

2006 36 NeuroImage 

10 
Frontopolar cortex mediates abstract 

integration in analogy 
2006 27 Brain Research 

11 
An fMRI investigation of the role of the basal 

ganglia in reasoning 
2007 22 Brain Research 

12 
Neural basis of generation of conclusions in 

elementary deduction. 
2007 14 NeuroImage 

13 
Distinct neural substrates for deductive and 

mathematical processing 
2008 16 Brain Research 

14 
Developmental shifts in fMRI activations 

during visuospatial relational reasoning 
2009 16 Brain and Cognition 

15 
Differential patterns of cortical activation as a 

function of fluid reasoning complexity 
2009 20 

Human Brain 

Mapping 

16 
Prefrontal and medial temporal contributions to 

episodic memory-based reasoning 
2008 17 

Neuroscience 

Research 

17 
The dynamics of deductive reasoning: An 

fMRI investigation 
2009 12 Neuropsychologia 

18 

Emotional and cognitive stimuli differentially 

engage the default network during inductive 

reasoning 

2011 20 

Social Cognitive and 

Affective 

Neuroscience 
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19 

Long-range functional interactions of anterior 

insula and medial frontal cortex are differently 

modulated by visuospatial and inductive 

reasoning tasks 

2013 22 NeuroImage 

20 Contradictory reasoning network: A study. 2014 13 PLOS series 

22 

Common and dissociable neural correlates 

associated with component processes of 

inductive reasoning 

2011 20 NeuroImage 

23 

Relational complexity modulates activity in the 

prefrontal cortex during numerical inductive 

reasoning: An fMRI study 

2014 20 
Biological 

Psychology 

24 
Neural efficiency as a function of task 

demands. 
2014 58 Intelligence 

25 

Modafinil Alters Intrinsic Functional 

Connectivity of the Right Posterior Insula: A 

Pharmacological Resting State fMRI Study 

2014 26 PLOS series 

26 

Tracking Functional Brain Changes in Patients 

with Depression under Psychodynamic 

Psychotherapy Using Individualized Stimuli 

2014 35 PLOS series 

27 

Decreased Peripheral and Central Responses to 

Acupuncture Stimulation following 

Modification of Body Ownership 

2014 17 PLOS series 

28 

Task and Resting-State fMRI Task and Resting-

State fMRI Reveal Altered Salience Responses 

to Positive Stimuli in Patients with Major 

Depressive Disorder 

2016 38 PLOS series 

29 

Activity in the fronto-parietal network indicates 

numerical inductive reasoning beyond 

calculation: An fMRI study combined with a 

cognitive model. 

2016 15 Scientific Reports 

30 
Neuroscientific insights into the development 

of analogical reasoning 
2018 138 

Developmental 

Science 

31 
Decoding rule search domain in the left inferior 

frontal gyrus. 
2018 13 PLOS series 

32 The neural bases of argumentative reasoning 2020 52 Brain and Language 
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