ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 01 博士論文
  2. 環境・生命工学専攻

データブレインドリブン汎用知能モデル及び知能健康への応用

https://maebashi-it.repo.nii.ac.jp/records/429
https://maebashi-it.repo.nii.ac.jp/records/429
ebb6dff6-5381-4624-8e83-413ba85b51eb
名前 / ファイル ライセンス アクション
【鄶弘智】論文 PhD-Thesis-KUAI.pdf 【鄶弘智】論文 PhD-Thesis-KUAI (9.4 MB)
Item type 学位論文 / Thesis or Dissertation_02(1)
公開日 2022-04-25
和題
タイトル データブレインドリブン汎用知能モデル及び知能健康への応用
和題
タイトル Data-Brain Driven General Intelligence Model with Smart Health Applications
言語 en
言語
言語 jpn
キーワード
主題 脳情報学
キーワード
主題 ウェブインテリジェンス
キーワード
主題 脳ビッグデータコンピューティング
キーワード
主題 汎用知能
キーワード
主題 認知神経科学
キーワード
主題 橋渡し研究
キーワード
主題 Brain Informatics
キーワード
主題 Web Intelligence
キーワード
主題 Brain Computing
キーワード
主題 General Intelligence
キーワード
主題 Cognitive Neuroscience
キーワード
主題 Translational Research
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_46ec
資源タイプ thesis
著者 鄶, 弘智

× 鄶, 弘智

鄶, 弘智

Search repository
著者(ヨミ) Kuai, Hongzhi

× Kuai, Hongzhi

WEKO 1302

Kuai, Hongzhi

Search repository
抄録
内容記述タイプ Abstract
内容記述 近年の人工知能技術と脳科学を組み合わせることによって、人間思考のメカニズムの解明による認知症やうつ病の治療及び人間の学習や推論モデルを応用した人工知能の開発が期待されている。
それに対し本研究では、脳情報学方法論に基づいて、人間の脳をひとつのビッグデータを持つ情報処理システムとみなし、階層化された知識(K)-情報(I)-データ(D)アーキテクチャに基づくネバーエンド学習をしながら、「体系的な脳機能の研究; 多目的に活用する体系的認知実験の設計と実施; 知識ベースを考慮した体系的ビッグデータの管理; 体系的ビッグデータの分析; 汎化知能モデルによる知的サービスの提供」という機能を提供するデータブレインを開発し、革新的な脳ビッグデータコンピューティング方法を提案した。また、認知症・うつ病の病理の解明、治療、予防や、AI ・ウェブインテリジェンス(WI)の新たな可能性を示した。具体的には、次に4つの主な研究成果を挙げる。

1. 階層化された知識(K)-情報(I)-データ(D)ビッグデータセンター、すなわちKIDアーキテクチャ     
知識層K:脳機能、実験タスク、データ管理及び分析方法の視点から体系的な脳機能研究プロセスを表現するための複数のナレッジグラフ。情報層I:セマンティックベクトルの形式でリソースの多面的な情報を記録するマルチ情報ウェアハウス。データ層D:マルチ課題の脳機能画像ビッグデータを中心として、マルチモーダル・マルチスケールのビッグデータの体系的な管理。
2. データブレインドリブン汎化知能モデルとするネバーエンド学習NELエージェント
ネバーエンド学習は、人間のように、何年にもわたる多様な主に自己監督の経験から、以前に学んだ知識を使用してその後の学習を改善し、プラトーを回避するための十分な内省を備えた多くの種類の知識を学習しながらパフォーマンスが向上する。KIDアーキテクチャに基づいて、思考空間としてのKIDループを構築し、人間のように機能するネバーエンド学習(NEL:Never-Ending Learning) で革新的な脳ビッグデータコンピューティング方法を提供する。
3. 多目的に活用する体系的認知実験の設計と実施
まず脳認知機能研究の目的に応じて主な実験タイプと補助実験タイプ、及び各実験タイプの関連性の推論ルールを制定し、体系的な実験の設計と実施のテンプレートグラフを作成する。次に脳ビッグデータセンターから新しい実験タスクをサンプリングし、データブレインモデルと推論ルールを組み合わせて、新しい実験タスクの属する補助実験タイプを識別し、設計した実験タスクを実験テンプレートグラフに記入する。すべての実験タイプが設計されるまで、上記の手順を数回実行する。この技術により、体系的な高次脳機能の研究のため、人間参加型(HITL:Human-in-the-Loop)の体系的な脳ビッグデータの収集、多面的な解析・理解が可能となる。
4. ネバーエンド学習による課題fMRI 脳ビッグデータの融合と体系的分析
まず主な実験と補助実験、各実験間の推論ルール、証拠の重みを含む実験テンプレートグラフを制定する。次に実験テンプレートグラフに従って、脳ビッグデータセンターから解析が必要なデータ・情報・知識を取得し、KIDループにおけるマルチ課題fMRI脳機能画像を多面的に解析しながら、複数の証拠に基づいた不確実性推論や融合的計算を通じて、複雑な脳機能の解明、心理状態の解読、神経難病や精神病態の診断を行う。

 論文は、全7章から構成されており、その概要は以下の通りである。第1章では、序論として研究の背景と方向性及び枠組みについて示した。第2章では、人間の認知と機能障害、脳を対象とするfMRI技術と脳情報学方法論を活用し、世界範囲の重大な脳研究の現状に関して4つの側面から整理した。第 3章では、データブレインドリブン汎化知能モデルを提案し、KIDアーキテクチャ、ネバーエンド学習、体系的認知実験の設計と実施ルールなどについて述べた。第4章と第5章では、脳機構の機能分離の観点から単変量及び多変量パターン分析法、脳機構の機能統合の観点から中心性などを定量化する脳機能的ネットワーク指標の評価法について、それぞれを開発し、さらに提案した汎化知能モデルは人間の帰納的推論の神経メカニズムの解明に応用し、提案した汎化知能モデルの有効性を示した。第6章では、橋渡し研究として、提案法のうつ病患者の脳機能の解明や知能健康への応用を試みた。第7章は総括であり、申請論文の研究成果をまとめ、今後研究や社会実装に向けた解決すべき問題について展望した。
学位名
学位名 博士(工学)
学位授与機関
学位授与機関名 前橋工科大学
学位授与年月日
学位授与年月日 2022-03-24
学位授与番号
学位授与番号 22303 甲第33号
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-20 14:09:40.211705
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3